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Abstract. Semantic Web technologies are increasingly being deployed in various 
e-health scenarios, prominently due to their inherent capacity to harmonize het-
erogeneous information from diverse sources and devices, as well as their capa-
bility to provide meaningful interpretations and higher-level insights. This paper 
reports on ongoing work in the recently started EU-funded project ALAMEDA 
towards a semantic toolkit for bridging the gap between early diagnosis and treat-
ment in a variety of brain diseases. The toolkit comprises (a) a semantic model 
serving as the underlying knowledge base for the toolkit; (b) a flexible semantic 
data fusion framework; (c) a conversational agent for interacting with human us-
ers and other components of the ALAMEDA system. 
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1 Introduction 

Semantic Web technologies are rapidly gaining popularity in the domain of e-health 
applications, where these technologies substantially facilitate the harmonization of data 
coming from multiple sources and devices, as well as its meaningful interpretation, 
providing, thus, context awareness and access to rich higher-level interpretations and 
insights. This paper reports on ongoing work within the context of the ALAMEDA EU-
funded project (https://alamedaproject.eu/) aimed at the development of a so-
phisticated semantic toolkit for bridging the gap between early diagnosis and treatment 



2 

in a variety of brain diseases: Parkinson’s Disease, Multiple Sclerosis, and stroke. The 
key component of the toolkit is the ALAMEDA semantic model, which consists of a 
set of interconnected ontologies, for semantically representing all pertinent concepts 
and entities. Operating on-top of the semantic model, two additional components of the 
toolkit are also presented: (a) the semantic data fusion framework for populating the 
ontology with instance data, and (b) the conversational agent that utilizes the ontology 
as a common vocabulary facilitating interaction with human users and other compo-
nents of the ALAMEDA system. 

2 Conceptual Semantic Model 

The overarching goal of our semantic model is to represent information that is made 
available via the questionnaires and the monitoring modules in the ALAMEDA system, 
as well as to establish semantic interoperability between the system components. 

2.1 Existing Resources 

Some of the most commonly used healthcare models for exchanging healthcare infor-
mation are FHIR-HL7 (http://hl7.org/fhir/) and ICD-10 (https://biopor-
tal.bioontology.org/ontologies/ICD10). Moreover, the Systematized No-
menclature of Medicine-Clinical Terms (SNOMED CT) [1] is a standardized, multilin-
gual vocabulary of clinical terminology for the storage, retrieval, and exchange of elec-
tronic health data and for the representation of medical concepts. There also exist dis-
ease specific ontologies like PDON, a Parkinson’s disease ontology [2], and MSO, a 
multiple sclerosis ontology [3], and the Dem@care ontologies (https://dem-
care.eu/ontologies/) for representing knowledge relevant to dementia. 

Compared to the aforementioned ontologies that can cover a subset of the respective 
domains, our proposed ontology seeks to respond to multiple aspects, comprised of 
modules for representing various needs, and can be easily adjustable and reusable. 

2.2 Ontology Design 

We relied on the NeOn methodology [4] for designing and developing the ALAMEDA 
ontology. The first phase involves the definition of the ontology requirements and the 
retrieval of the Ontology Requirements Specification Document (ORSD). At this point, 
the contribution of the domain experts was crucial, as they define the use cases and 
propose optimal matching to ontology requirements. These requirements correspond to 
a set of Competency Questions (CQs) [5], which specify what knowledge must be en-
tailed in the ontology. The second phase involves the development of the ontology at a 
primary level, where the existing ontologies that will be (re)used are defined. The final 
phase contains the implementation and enrichment of the ALAMEDA ontology. 
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2.3 Ontology Modules 

The ALAMEDA model contains six modules and a main ontology: 

• Model is the parent of all the hierarchical relations in ALAMEDA. 
• Home provides information about the behavioural interpretation and reported diffi-

culties in the home environment. 
• Lab indicates the types of information relevant to the tests, assessments, patient’s 

clinical and experimental records in the lab environment. 
• Person refers to human users’ sociodemographic data and represents information 

about persons, diseases, gender, educational levels and languages. 
• Event provides information relevant to the entities and activities that take place in 

the context of the ALAMEDA use cases. Its design is based on the Event Model F 
[6] and the Event Ontology1. 

• Sensors describes information concerning the type and properties of the sensors used 
in the ALAMEDA system, which may be fixed on wearable. Its design was strongly 
influenced by SSN/SOSA [7] and the Smart Home Ontology [8]. 

• Time represents the temporal dimension, namely, the time, duration, and information 
of the tasks/events taking place within the ALAMEDA context. 

3 Semantic Data Fusion 

The integration of the inputs from the various heterogeneous sources into the 
ALAMEDA semantic model will be handled by CASPAR (Structured Data Semantic 
Exploitation Framework)2, our domain-agnostic semantic data fusion framework. 
CASPAR is based on the ontology population principles presented in previous works of 
ours [9, 10]. In a nutshell, the tool deploys a set of interconnected mechanisms for in-
gesting data into a semantic model that incorporate: 

• automated acquisition of structured data from APIs, databases, messaging buses,  
• mapping of input data fields to semantic entities (concepts, relationships, etc.),  
• semantic fusion and population of knowledge into a semantic repository,  
• semantic enrichment of existing knowledge from Linked Open Data sources,  
• rule-based semantic reasoning to unveil underlying or generate new knowledge. 

CASPAR defines mappings between input data fields and respective ontology concepts 
for the fusion and population of knowledge through a flexible methodology using a 
Domain-Specific Language (DSL) based on JSON syntax. The building blocks of a 
mapping are templates, individuals, and properties: 

• A template serves as the mechanism for focusing on specific parts of the input. Since 
large pieces of input can be handled by CASPAR, defining several templates within 
a mapping that target specific parts allows easier maintenance of the mapping itself. 

 
1  http://motools.sourceforge.net/event/event.html 
2  https://caspar.catalink.eu/ 
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• A template contains a set of individuals, which declare the nodes that need to be 
created or updated in the Knowledge Graph (KG). From the perspective of using an 
ontology as the KG schema, an individual is an instance of one or more classes. 

• A property indicates a desired edge that needs to be created in the KG, connecting a 
node with another node or with a literal value. Properties in mappings are defined 
by a set of predicates, meaning the relationship types of the ontology, and objects, 
which indicate the value that will be given to the property. 

4 Conversational Agent 

Nowadays, more and more chatbot platforms are emerging with the aim to provide 
personalized health services. Through a chat with the patient the chatbot gathers infor-
mation related to the symptoms and the person’s condition and then provides a report 
to the clinician, assisting this way in better managing the patient’s health condition. 

4.1 Chatbots in Healthcare 

There exist several chatbot applications in healthcare. Puffbot is a conversational agent 
that helps people with asthma [11]. EVA is another chatbot that helps people to self-
manage their diabetes, by educating them, interacting with them, and giving them rec-
ommendations [12]. HOLMeS, on the other hand, serves as a medical recommendation 
system designed to autonomously handle discussions with patients and chat and act like 
a human physician helping patients in choosing their disease prevention pathway [13]. 

4.2 A Chatbot for Brain Diseases in the ALAMEDA Project 

The ALAMEDA chatbot will gather lifestyle data generated from static and wearable 
sensors and will identify changes in the users’ lifestyle. Unusual measurements will 
trigger the agent to ask the patient questions, and categorize these measurements based 
on the ALAMEDA semantic model (see Section 2). We have identified the following 
requirements for the ALAMEDA chatbot: 

• Non-intrusive: The conversational agent should not interfere with the patients’ daily 
activities. It should be up to the user to define how much information she wants to 
share and when is the appropriate time to be inquired for information. 

• Adaptive and personalized: The agent should be unique, tailored for its user (patient 
or caregiver), and should be able to adapt based on their needs. Based on a sentiment 
analysis component [14], the agent will be able to sense the user’s dissatisfaction. 

• Information disambiguation: In the cases of missing, erroneous, or conflicting input, 
the conversational agent should be able to resolve the issue by sending an appropriate 
enquiry to the user [15]. 

In order for all the intelligent ALAMEDA components to communicate, a common 
semantic dictionary is necessary. In the case of the agent, such a resource is necessary 
whenever communication with human participants required. The ALAMEDA semantic 
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model (see Section 2) serves as the common language between artificial agents and 
humans (patients and caregivers) (see Fig. 1). 

 
Fig. 1. The ALAMEDA ontology as a common vocabulary between human and artificial agents. 

In order to illustrate the orchestration of the above components, let us present the fol-
lowing use-case scenario: 

1. (Intention) User wishes to report to the chatbot that he feels his heart pacing fast. 
2. (Natural Language) User types “I feel my heart pacing fast” in the chatbot app. 
3. (Natural Language Understanding) The conversational agent identifies the intent 

that the user wants to declare an event of type: increased_heart_rate. 
4. (Knowledge Query) As a knowledge management process, an 
increased_heart_rate event declared by the user initiates a knowledge query. 
The system has to confirm the event with the sensors. 

5. (Semantic Reasoning) The Semantic Reasoning component retrieves the data of the 
patient (stored in their mobile device) to check if there are recent sensor data 
annotated with the increased_heart_rate event entity from the event ontology. 

6. (Natural Language Generation) If not, the chatbot re-assures the user that every-
thing looks normal, and suggests relaxing. The heart rate will be monitored again in 
5 minutes and reported back to the patient. 

5 Conclusions and Next Steps 

This paper reported on ongoing work within the ALAMEDA EU-funded project in-
volving the deployment of a toolkit based on semantic technologies that will constitute 
the backbone of the overall e-health system for brain diseases. We presented the current 
state of the ALAMEDA semantic model, the semantic data fusion framework, and the 
conversational agent. Work on these components is still at an early stage; thus, we will 
be able to report on more advanced iterations of those in future work of ours. 
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