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Abstract. Parkinson’s disease (PD) is one of the most prevalent and complex 

neurodegenerative disorders. Timely and accurate diagnosis is essential for the 

effectiveness of the initial treatment and improvement of the patients’ quality 

of life. Since PD is an incurable disease, the early intervention is important to 

delay the progression of symptoms and severity of the disease. This paper aims 

to present Ince-PD, a new, highly accurate model for PD prediction based on 

Inception architectures for time-series classification, using wearable data derived 

from IoT sensor-based recordings and surveys from the mPower dataset. The fea- 

ture selection process was based on the clinical knowledge shared by the medical 

experts through the course of the EU funded project ALAMEDA. The algorithm 

predicted total MDS-UPDRS I & II scores with a mean absolute error of 1.97 for 

time window and 2.27 for patient, as well as PDQ-8 scores with a mean absolute 

error of 2.17 for time window and 2.96 for patient. Our model demonstrates a 

more effective and accurate method to predict Parkinson Disease, when compared 

to some of the most significant deep learning algorithms in the literature. 
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1  Introduction 

Parkinson’s disease (PD) is a progressive, chronic and common neurodegenerative dis- 

ease that affects more than 10 million people worldwide [1]. The prevalence of PD 

has been increased in recent decades, and it’s estimated that almost 1% of people above 

60 years old in industrialized societies are affected by the condition. However, the symp- 

toms of PD can often go unnoticed in the early stages, which might delay early diagnosis 

and accurate treatment [2, 3]. Usually, the symptoms are both motor and non-motor, but 

in the early stages, they are mostly linked with dyskinesia, tremor and muscle stiffness. 

Severity of PD is commonly assessed using the Movement Disorder Society-Unified 
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Parkinson’s Disease Rating Scale (MDS-UPDRS) and Parkinson’s disease Question- 

naire (PDQ-8). The MDS-UPDRS is a revision of Unified Parkinson’s Disease Rating 

Scale (UPDRS) and developed to resolve some flaws of the original scale [4]. The MDS- 

UPDRS consists of 4 different parts, MDS-UPDRS I, II, III and IV, which are used to 

monitor and evaluate motor and non-motor aspects of experiences and activities of daily 

living (ADL), mood and mental state, complication in treatment and more. Moreover, 

PDQ-8 is an 8-item questionnaire and a shortened version of PDQ-39. It requires the 

patient to answer eight questions relevant to their mood, physical condition, Activities 

of Daily Living (ADL) and mental state where a high accumulated score signifies poor 

quality of life. Overall, both of these assessment tools are considered as reliable and 

valid measures and are widely used in clinical practice and research settings [5, 6]. 

In recent years, the extensive use of Artificial Intelligence (AI) and Internet of Things 

(IoT) technologies to monitor patients with Parkinson’s disease has been gaining trac- 

tion in the healthcare industry [7]. Especially during the COVID-19 pandemic era, the 

advanced need for PD patients to continue their treatment in a riskless way highlighted 

the necessity for personalized and remote monitoring [8, 9]. To achieve that, sensors such 

as magnetometers, accelerometers, gyroscopes, are increasingly being used in wearable 

devices like smartwatches and smart insoles to collect real-time data on patients with the 

aim of providing better health services and improving their living conditions [10–12]. 

This data can be used in combination with Machine Learning (ML) and Deep Learn- 

ing (DL) techniques to predict disease stage, severity, symptoms or medical test scores, 

providing more flexible ways of handling large medical datasets, minimizing the costs 

of medical care and assisting healthcare professionals to make timely decisions [13]. 

The ALAMEDA project1, funded by the EU, aims to provide personalized rehabilita- 

tion treatment assessments for patients with neurological disorders such as Parkinson’s, 

Multiple Sclerosis and Stroke, using AI. One of the key goals of the project is to assist 

healthcare professionals in making timely and accurate decisions (e.g. diagnosis) with- 

out requiring patients to make physical visits to a clinic or hospital. To achieve this goal, 

the project is using various wearable sensors, such as accelerometers, to collect real-time 

data on patients’ movements and other physical indicators. This paper presents a deep 

learning-based algorithm for estimating total MDS-UPDRS (parts I and II) and PDQ-8 

score from data collected from wearable sensors. More specifically, we present Ince-PD, 

a highly accurate model for PD prediction based on the InceptionTime architecture for 

time-series classification [14]. For comparison purposes, we implemented a number of 

deep learning models based on LSTM and CNN architectures. 

The rest of this paper is organized as follows. In Sect. 2, a literature review on previous 

related works on Parkinson’s disease prediction using wearable sensors and deep learning 

techniques is presented. In Sect. 3, the Ince-PD architecture and the implementation of the 

model for PD prediction is introduced. In Sect. 4, the experimental setup, the comparative 

and evaluation methods are described. Finally, in Sect. 5 the results obtained of the 

proposed framework are discussed and in Sect. 6, the conclusions and future research 

directions are presented. 

 

 
 

1 https://alamedaproject.eu/. 

https://www.alamedaproject.eu/
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In the existing literature, there are numerous studies on the PD detection, the stage and 

severity of the disease and the prediction of variables pertinent to the use case. Some 

of the most common machine learning and deep learning models for Parkinson’s dis- 

ease are logistic regression, k-nearest neighbors, Support Vector Machine, classification 

trees and neural networks [15–19]. Nilashi et al. [20] used supervised and unsupervised 

learning methods to perform PD diagnosis through UPDRS prediction. Their study’s 

results demonstrated that Expectation-Maximization (EM) with Support Vector Regres- 

sion (SVR) ensembles provide better performance than decision trees and SVR combined 

with other clustering approaches. An ensemble deep model for continuously estimating 

UPDRS III based on free-body motion data was presented by Hssayeni et al. [21]. The 

evaluation with Leave-One-Out Cross-Validation (LOOCV) indicated high correlation 

and a low Mean Absolute Error (MAE) of 5.95. Rehman et al. [22] applied Deep Learn- 

ing techniques to wearable-based gait data to predict MDS-UPDRS III scores. Their 

proposed DL Convolutional Neural Network (CNN) achieved a MAE of 6.29. A gait 

analysis-based PD auxiliary diagnosis system proposed by Chen et al. [23]. The system 

collected data from embedded devices, which was then analyzed by a 1D CNN model. 

The system achieved a high recognition accuracy of 91.4% for abnormal gait. Setiawan 

et al. [24] also implemented a DL algorithm based on Vertical Ground Reaction Force 

(VGRF) time frequency features for PD detection and severity classification. The best 

average accuracy of this algorithm was 96.52% using ResNet-50. Papadopoulos et al. 

[25] focused on the unobtrusive detection of PD from multi-modal and in-the-wild sen- 

sor data using a deep learning model that consists of three parts: the feature extraction 

module, the attention module and the final classifier module. Asuroglu et al. [26] pre- 

sented a deep learning model, which combines CNNs and Locally Weighted Random 

Forest (LWRF) for PD severity assessment using wearable sensor data and achieved 

3.009 MAE. Zhao et al. [27] presented a deep learning architecture that combines CNN 

and Long shot-term memory (LSTM) that outperforms other previous studies in terms of 

accuracy in Parkinson’s Disease prediction. In a recent study, Yang et al. [28] developed 

an objective method to automatically classify patients with Parkinson’s Disease and 

Health Controls (HC) using PD-ResNet from gait data. Interestingly, they achieved bet- 

ter results than previous methods in terms of accuracy, precision, F1-Score and recall. 

Balaji et al. [29] presented an automatic and non-invasive method for PD diagnosis, 

using LSTM network for severity rating of PD. Finally, Bobic et al. [30] introduced a 

predictive model for bradykinesia in PD, using CNN architectures. 

Even though Time Series Classification (TSC) is considered as a complex problem, 

the arise of deep learning showed promising results for its solution. The InceptionTime, 

as presented by [14], is an ensemble of deep CNN models, which provide great results 

for TSC. The core parts of an inception network are the two residual blocks, each of one 

consists of three Inception modules, which replace the traditional fully convolutional 

layers. Each inception module is composed of multiple layers like the Bottleneck layer, 

the convolution layer, the max pooling layer and the depth concatenation layer. A linear 

shortcut connection is used to transfer the input of every residual block to the next 

block’s input. After deploying the residual blocks, a Global Average Pooling (GAP) is 

utilized which computes the average of the output multivariate time series of the whole 
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dimension. Lastly, a traditional fully connected Softmax layer is used. Figure 1 presents 

the basic structure of the InceptionTime network. 

 
 

Fig. 1. The Inception network of InceptionTime model. 

 

The present study uses several residual connections and modified inception modules 

as key components of its architecture to predict PD stage using total MDS-UPDRS I & 

II and PDQ-8 scores. To the best of our knowledge, this is the first regression model 

for PD prediction that is based on the InceptionTime network and the efficiency of the 

model provides great potential for future work. As in most cases the DL algorithms 

perform better in PD prediction, we utilized some of the most efficient architectures as 

the comparison base for our approach. 

 
3  Methodology 

Machine Learning and Deep Learning techniques have shown great potential in pre- 

dicting and diagnosing diseases, including Parkinson’s disease. This study utilizes the 

InceptionTime architecture, a novel architecture for Time Series Classification (TSC), 

to build Deep Learning models able to diagnose Parkinson’s Disease through predict- 

ing total MDS-UPDRS I & II and total PDQ-8 scores. InceptionTime architecture is 

presented in Sect. 2 and our proposed Ince-PD is presented in detail in Sect. 3.3. The 

proposed framework for deep learning modeling for Parkinson’s disease diagnosis, as 

shown in Fig. 2 can be highlighted in 3 specific stages: 

 

Fig. 2. Flow of the proposed Ince-PD framework for PD prediction. 

 

 
• Data acquisition, where the data is acquired and evaluated based on the clinical 

requirements and the needs of the project. 

• Data preprocessing, where the data is converted into defined sets. 

• Model implementation and total MDS-UPDRS I & II and total PDQ-8 prediction, 

where the model architecture is built and the target labels are predicted. 
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3.1 Data Acquisition 

This study used data acquired from the mPower Public Research Portal [31]. The mPower 

is a clinical observation study on PD that collected data from sensor-based recordings and 

surveys over a large number of participants. The whole study carried out through a mobile 

application interface and its 7 tasks are divided in activities (walking, memory, tapping 

and voice) and survey questionnaires (demographic survey, MDS-UPDRS survey and 

PDQ-8 survey). 

Based on the suggestions from the medical experts, we utilized four out of seven 

tasks (the walking task, the demographics survey, the PDQ-8 and MDS-UPDRS survey). 

The walking test consists of three different segments: outbound, rest and return. The 

accelerometer and gyroscope of the smartphone capture the three-dimensional linear and 

angular acceleration of each participant during this test. The purpose of utilizing these 

data is the evaluation of any movement limitation that is relevant to PD and discriminating 

PD patients from healthy control subjects, while predicting disease stage using the scores 

of the questionnaires. Table 1 summarizes the number of participants and the unique tasks 

per activity in the mPower dataset. 

 

Table 1. Data availability in mPower dataset. 

 

Activity Number of Unique Participants Unique Tasks 

Demographics 6805 6805 

PDQ-8 1334 1641 

MDS-UPDRS 2024 2305 

Walking total 3101 35410 

Walking outbound acc 3101 35407 

Walking return acc 2807 23883 

Walking rest acc 3101 35407 

 

 

 

3.2 Data Preprocessing 

Numerous studies have shown that pre-processing the data is necessary for MDS-UPDRS 

and PDQ-8 prediction to be more accurate [32, 33]. In the preprocessing stage, missing 

values, noise and inconsistencies in the dataset are addressed. The first step was to 

determine which of the available data is useful for the requirements of the project and 

the management of the missing values, as they can be an essential obstacle for Deep 

Learning Algorithms. Feature selection aims to reduce model’s complexity and provides 

faster and easier training and interpretation. In this work, participants who performed 

both surveys and specific walking tasks were selected by utilizing information derived 

from the clinicians of the project. Converting the raw data to appropriate input format 

for training models was important part of the preprocessing, while the definition of the 

common keys addressed the overlapping values of the dataset. The following step was 
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the segmentation of the time sequences into smaller fragments by using sliding windows 

of 5 s (500 rows given a sampling rate of 100 Hz), corresponding to 50% overlap. For 

the dataset partitioning, the 80% of the data was the training sample, while the 20% was 

utilized for testing purposes. 

 
3.3 Proposed Model Architecture and Implementation 

In this study, the InceptionTime, a novel architecture for TSC, is utilized for total MDS- 

UPDRS I & II and PDQ-8 prediction. The main parts of the Inception network architec- 

ture are described in Sect. 2. Several significant modifications have been implemented 

in the architecture, which are classified into two distinct categories: Firstly, alterations 

pertaining to the Bottleneck layer inside the inception modules. Secondly, changes have 

been made to the overall framework, including the addition of dropout and batch nor- 

malization layers, as well as the utilization of different activation functions. The residual 

blocks are essential parts as the connection at every third inception module provides 

better optimization capabilities and overall performance. Thus, they remained as pro- 

posed in the original work. The Bottleneck layer inside the inception module is removed, 

as experiment results suggested that without it, better efficiency is achieved. After the 

modified inception modules, a batch normalization layer is deployed, followed by a Rec- 

tified Linear activation function (ReLU). The output from the ReLU activation function 

is passed on to an one-dimensional Global Average Pooling before passing to the output 

layer where instead of the Softmax layer, a Rectified Linear activation function (ReLU) 

is deployed to achieve faster learning and better performance. To overcome overfitting 

problems, tuning of the kernel size of the convolution has been implemented, while 

adding a Dropout layer with 0.5 rate after Inception modules improve the generaliza- 

tion of the model and prevent it from relying too heavily on any set of features. Other 

parameters that needed to be modified were the depth and the number of filters. The final 

stage of the implementation process was the prediction stage. At this point, the models 

predicted the total MDS-UPDRS I & II and PDQ-8 according to the input data. The 

proposed Ince-PD model is built by utilizing InceptionTime and differentiating essential 

components, as detailed above. In Fig. 3, a schematic diagram of the proposed Inception 

model for PD prediction is depicted. 

 
 

Fig. 3. The architecture of the proposed Ince-PD model for total-MDS-UPDRS I & II and PDQ-8 

prediction. 

 

After implementing several experiments, we concluded that the use of convolution 

layers between the inception modules is a sensible decision with respect to performance 

and computational complexity. 



 
4 Experiments 
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4.1 Model Performance Evaluation 

The performance evaluation of the Inception model was carried-out by using the Mean 

Absolute Error (MAE) and Mean Square Error (MSE) per-window and per-patient basis. 

The mathematical formulas of MAE and MSE are presented in Eq. 1 and Eq. 2, respec- 

tively, where y
/ \

,  y are the predicted value and the actual value. The character n represents 
i  i 

the entire set of the samples. 

MAE = 
1   n 

|yˆ − y | (1) 

n i=1  
i i 

MSE = 
n 

i=1 

(y î − yi)2 

n 
(2) 

To further evaluate our model, a variety of different approaches in literature for 

estimating the total MDS-UPDRS I & II and PDQ-8 were used for comparison purposes. 

The proposed method was compared to the same dataset for both target labels with the 

architectures that will be introduced in the next sections. 

 
4.2 Experimental Setup 

The Inception model that is presented in this study was developed with “Python 3.8” and 

operated on a PC with an Intel(R) Xeon(R) Silver 4210 CPU @ 2.20 GHz processor. 

The developed network was implemented in TensorFlow [34] and the models trained 

on 10 epochs, allowing the model to demonstrate better performance by learning from 

the training data. During the training process, the fit method was applied to the training 

data and target labels, and the Adam optimizer, an adaptive learning rate optimizer, was 

used for efficiency and speed purposes [35]. The model’s hyperparameters tuning was 

implemented heuristically, using TensorFlow’s HParams library. The optimization and 

tuning processes utilized MAE and MSE to define the effectiveness of the model and 

were important for the optimal configuration of the model. The aim was to minimize 

the MAE and MSE without sacrificing the speed and complexity of the model, while 

comparing our results with optimized models that achieved efficient results on the same 

dataset. In the following Table 2, some essential parameters of our model are presented. 

 
4.3 Comparative Methods 

In order to facilitate comparisons, we trained some models based on CNN and LSTM 

architectures described in the literature. All the models were trained and evaluated on 

the same train and test set to achieve meaningful comparison. The first model is an 1D 

Convolutional Neural Network (1D-CNN) that consists of four convolutional layers, two 

pooling layers and two fully connected layers proposed in [23]. The second model is 

introduced in [21] and describes a 1-D CNN-LSTM (1D-CNN-LSTM) network, con- 

sisted of three convolutional blocks with a max pooling layer deployed between each 

block. The third model, which is presented in [22], is based on CNN architecture (CNN), 
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Table 2. Specification of parameters of the model. 

 

Parameters Specification 

Activation function ReLu 

Batch size 256 

Epochs 10 

Optimizer Adam 

Metric Mean Absolute Error (MAE) 

Loss function Mean Squared Error (MSE) 

 

 
where the first block of the convolutional layers (each one consists of four 1-D Con- 

volutional layers) is followed by a fully connected layers block. Between each 1-D 

convolutional layer a Rectified Linear Activation Function (ReLU) is deployed. The 

fourth model that was implemented is based on [29] and was a class of recurrent neural 

network, a Long Short-Term Memory (LSTM), which is followed by a Fully Connected 

Layer and a Softmax layer. The last model that designed was a Convolutional Neural 

Network (CONV-1-CONV-2) proposed by [30] which comprised of a convolutional 

layer (CONV-1) with 16 filters followed by a batch normalization layer, a ReLU activa- 

tion function layer, and a max-pooling layer and convolutional layer (CONV-2) with 32 

filters size, followed by the same architecture. 

 
5 Results 

5.1 Total MDS-UPDRS I & II and PDQ-8 Results 

The first step of evaluating our model was the verification of its superiority against the 

previously described models. Due to the combination of inception modules with ReLU 

function, residual connections and dropout layer the Ince-PD provide better learning 

capabilities, while being computationally efficient and speeding up the training process. 

Despite optimizing the parameters of the comparative methods, our proposed model 

demonstrates the best performance compared to them, achieving a MAE of 1.97 on per- 

window and 2.27 on per-patient basis for total MDS-UPDRS I & II and a MAE of 2.17 

on per-window and 2.96 on per-patient basis for total PDQ-8. Table 3 lists the results 

for MDS-UPDRS I & II and PDQ-8. 

After implementing multiple experiments, it was concluded that the appropriate 

number of epochs is 10, as the model reached saturation. To verify this, we run our 

experiments for 13 epochs, but the performance of the models did not show significant 

improvement, comparing to 10. Figure 4 depicts the comparative results in MAE for the 

different models for PDQ-8 after running experiments for 10 and 13 epochs. 
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Table 3. MAE for Total MDS-UPDRS I & II and PDQ-8 on per-window and per-patient basis. 

 

Model Total MDS-UPDRS I & II Total PDQ8 

MAE (window) MAE (patient) MAE (window) MAE (patient) 

1-D CNN 5.02 6.19 3.11 3.6 

1-D CNN-LSTM 5.73 6.93 2.94 3.29 

CNN 5.22 6.38 3.04 3.44 

LSTM 5.08 5.80 3.62 3.57 

CONV-1-CONV-2 5.46 5.12 3.21 3.36 

Ince-PD 1.97 2.27 2.17 2.96 

 

 

 

Fig. 4. MAE for PDQ-8 for 10 and 13 epochs. 

 
 

To observe the model’s loss during the training process, we examine the value of the 

Mean Squared Error during 10 epochs. As seen in Table 4, Ince-PD achieves significant 

improvement in its performance for both target labels. The MSE of the model steadily 

decreases from 9.32 to 6.91 for total MDS-UPDRS I & II and from 9.49 to 8.23 for 

total PDQ-8. This reduction indicates the ability of the proposed method to effectively 

predict the score of the surveys. 
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Table 4. The MSE of Ince-PD for total MDS-UPDRS I & II and PDQ-8 for 10 epochs. 

 

Epochs MDS – UPDRS I & II PDQ-8 

MSE MSE 

2 9,3224 9,4992 

4 9,1288 9,0174 

6 8,6521 8,7637 

8 7,874 8.4439 

10 6,9102 8,2354 

 
 

6  Conclusion 

Nowadays, the use of AI is an important part of the healthcare domain. ML and DL 

methods are increasingly used to predict Parkinson’s disease. In this paper, tri-axial 

accelerometer data from wearable sensors are given to an Inception based model that 

estimates the mean absolute error for total MDS-UPDRS I & II and PDQ-8 scores. 

The combination of the different units of our model provides better learning abilities 

and generalization. The results obtained far exceed some basic architectures used in the 

field of neurodegenerative disease prediction. After optimization, the MAE was 1.97 

and 2.27 for window and for patient basis for total MDS-UPDRS I & II, while the MAE 

for PDQ-8 was 2.17 for window and 2.96 for patient. Despite its great performance 

though, there are limitations that should be addressed in the future. The adaptability 

of the model to different datasets is a concern, as a small amount of data may affect 

its efficiency. Furthermore, the framework approaches PD prediction through regression 

and no classification experiments executed for its evaluation. Future work should expand 

the model for more target labels (e.g. Hoehn & Yahr) and more neurodisorders like 

Multiple Sclerosis and Stroke. With its great performance, the Ince-PD model enables 

an increasingly better assessment of the stage of a patient’s Parkinson’s disease through 

the prediction of the score of important questionnaires for medical experts. Experiments 

show that with proper optimization the MAE is minimized and thus this work provides 

great potential in the field of PD prediction, helping to minimize costs and to make 

diagnosis by physicians more efficient. 
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