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Mocanu, I.G.; Florea, A.M.;

Tsakanikas, P.; Ribigan, A.C.; Pedullà,

L.; Bougea, A. Monitoring and

Predicting Health Status in

Neurological Patients: The

ALAMEDA Data Collection Protocol.

Healthcare 2023, 11, 2656. https://

doi.org/10.3390/healthcare11192656

Academic Editor: Grzegorz Bulaj

Received: 16 August 2023

Revised: 12 September 2023

Accepted: 22 September 2023

Published: 29 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

healthcare

Study Protocol

Monitoring and Predicting Health Status in Neurological
Patients: The ALAMEDA Data Collection Protocol
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Abstract: (1) Objective: We explore the predictive power of a novel stream of patient data, combining
wearable devices and patient reported outcomes (PROs), using an AI-first approach to classify the
health status of Parkinson’s disease (PD), multiple sclerosis (MS) and stroke patients (collectively
named PMSS). (2) Background: Recent studies acknowledge the burden of neurological disorders
on patients and on the healthcare systems managing them. To address this, effort is invested in
the digital transformation of health provisioning for PMSS patients. (3) Methods: We introduce
the data collection journey within the ALAMEDA project, which continuously collects PRO data
for a year through mobile applications and supplements them with data from minimally intrusive
wearable devices (accelerometer bracelet, IMU sensor belt, ground force measuring insoles, and sleep
mattress) worn for 1–2 weeks at each milestone. We present the data collection schedule and its
feasibility, the mapping of medical predictor variables to wearable device capabilities and mobile
application functionality. (4) Results: A novel combination of wearable devices and smartphone
applications required for the desired analysis of motor, sleep, emotional and quality-of-life outcomes
is introduced. AI-first analysis methods are presented that aim to uncover the prediction capability
of diverse longitudinal and cross-sectional setups (in terms of standard medical test targets). Mobile
application development and usage schedule facilitates the retention of patient engagement and
compliance with the study protocol.

Keywords: PD; MS; stroke; patient reported outcomes; wearables; quantitative motor analysis; sleep
analysis; mood estimation

1. Introduction

Recent studies acknowledge the burden that neurological disorders have on the lives
of people experiencing them, as well as on the societies and economic systems in which they
live [1]. The overall direct costs of brain disorders make up for 60% of the total costs—which
the European Brain Council (EBC) estimated at EUR 800 billion per year in Europe [2]. At
the same time, according to the World Health Organization, there is a shortage of 4.3 million
physicians, nurses and other healthcare professionals worldwide, and the gap is widening.
The need arises to put in comprehensive efforts to establish policies, financing resources
and improvements in healthcare services for patients of neurological diseases [3,4]. This
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includes empowering the healthcare providers in providing their services in the most
informed manner, by being easily, and in a timely manner, aware of changes in the health
status of patients.

In the case of brain disease research, technological advances and efforts towards the
digital transformation of health provisioning services have shown particular promise [5–7].
Data analytics tools and machine learning (ML) methods can provide clinically actionable
information that can complement or even empower medical recommendations [8,9].

In this context, we introduce the ALAMEDA project (https://alamedaproject.eu,
accessed on 11 August 2023), whose vision is to research and prototype artificial intelligence
(AI)-enabled healthcare support systems for people with brain diseases and disorders,
specifically focusing on the needs of Parkinson’s disease (PD), multiple sclerosis (MS) and
stroke (set of diseases hereafter collectively named PMSS) patients and those related to their
rehabilitation. ALAMEDA is an observational study, seeking to explore and identify the
most promising means of integrating two principal sources of data: (i) general health and
lifestyle retrospective data (as quantified by standard evaluation in the medical domain),
and (ii) new streams of patient monitoring data.

The latter, in its turn, uses two modalities of data collection: (i) automatically obtained,
objective data, gathered through the use of wearable devices, and (ii) subjective, self-
reported patient outcomes (PRO) retrieved through the use of mobile applications. Together,
the two modalities cover data that look at the everyday activities, sleep behaviors, emotional
status and quality-of-life (QoL) aspects of a patient.

Studies similar to the one proposed in the ALAMEDA project have been conducted
previously. They have focused both on long-term PRO monitoring (e.g., PD_Manager [10],
mPower [11], MO-BITEC [12], PROMOPROMS [13]) as well as on specific motor impair-
ment analysis (e.g., unstable walking patterns and fatigue in MS [14], analysis of ambulation
data from recovering stroke patients [15], and tremor detection for PD [16,17]). These re-
lated studies, as well as others, are analyzed in more detail in Section 3.1. However, it
is worth noting that ALAMEDA distinguishes itself from such previous studies through
the following aspects. The proposed wearable devices (see Section 2.2.1) are minimally
intrusive and work in tandem with one another such that their data output and their
positioning on the body (soles, hip and wrist) cover the information needed for useful
predictions highlighted in previous studies at a lesser burden for the patient. Further-
more, the ALAMEDA study is designed to offer two overlapping data collection directions:
the continuous PRO-based data collection, which runs for one year, and the quarterly
1–2 week-long milestones of intense monitoring, where wearable data are collected under
both clinical, as well as free-living conditions (see details in Section 2.1). While ALAMEDA
has a lower number of patients per study, the diversity and amount of data per patient
make it both novel and suitable for the exploration of the most promising health status
prediction setups using machine learning (ML)-based approaches.

Considering the project context, it is worth noting that it has a significant exploratory
role. The overall objective of the PD, MS and stroke studies is to investigate the potential
of the outlined data streams to predict outcomes of disease-specific standard medical
tests (or a change in these outcomes from one milestone to another) and to validate the
feasibility of the proposed monitoring protocol to be extended to follow-up studies with
larger participation. Study-specific objectives are further specified when introducing each
pilot use case.

Given these objectives, the collected data are subjected to an AI/ML-based analysis
aiming to uncover which prediction setups (combination of input data sources and health
status targets) are feasible under the proposed data collection protocol. We aim to examine
prediction setups that are both longitudinal (predict change in health status target from
one milestone evaluation to the next) and cross-sectional (predict momentary health status
target based on a history of multi-modal inputs).

The result of this analysis is intended to guide clinicians in the design of data collection
procedures for future, large-scale trials that (i) can validate the generalization potential
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prediction setups identified in ALAMEDA and that (ii) can evaluate the usefulness of mod-
ifications to pharmacological and non-pharmacological therapeutic options (e.g., different
exercise regimens) that are informed by these AI/ML predictions.

To respond to the mentioned objectives, ALAMEDA adopts the guiding principals of
digital transformation [18] applied to organizational activities, health assessment processes
and models to leverage the opportunities of the proposed mix of digital technologies. It is
the scope of this article to describe the exact setup of the digital transformation process for
each of the three considered brain diseases, as well as to present the methods by which we
evaluate the feasibility of the process and the utility of the proposed prediction setups.

ALAMEDA Use Cases

Three major brain diseases and corresponding pilot sites are targeted in ALAMEDA:
(a) the PD pilot study in Greece, at the sensing Movement Disorders Clinic of the First
Department of Neurology at Eginition Hospital, Athens University Medical School (NKUA);
(b) the MS pilot study by the Italian MS Foundation (FISM, the leading funding agency of
research in Italy and the third worldwide in MS field) and its society (AISM, which relies
on the AISM Rehabilitation Service Ligure in Genoa, Italy); and (c) the stroke rehabilitation
pilot study at the Neurology Department of the University Emergency Hospital of Bucharest
(UHB), Romania. All three pilot studies share a main approach to evaluate the success
of the digital transformation process: (i) determine the feasibility of the data collection
protocol, judged by the adherence of patients to it and their experience in interacting with
the applications and devices, and (ii) analyze the ability of the digital data to reflect on the
patients’ condition as quantified by the accuracy of AI models that are developed for the
prediction setups specific to each disease (see more in Section 2.4). However, each study
also aims to explore a separate set of characteristic research interests.

The PD pilot implements a clinical study to assess the use of sensors in monitoring
the motor and non-motor aspects of advanced Parkinson’s disease. The care of patients
with advanced Parkinson’s disease (PD) is complicated, as both motor and non-motor
manifestations of the disease worsen over time and seriously impair the quality of life
(QoL) of patients and their caregivers. Various scales have been devised to monitor the
motor and non-motor aspects of the disease, but they are subjective in nature, subject to
recall biases, they do not have good temporal resolution, and are not easily quantifiable. In
contrast, technology-based applications to monitor various aspects of the disease have the
potential to provide objective quantifiable data over a long period of time, and to capture
more accurately the temporal fluctuations of the disease phenomena [19]. In particular
regarding sleep, which represents a serious problem for many patients with PD, there is a
need to be able to monitor sleep in patients with PD with an easily applicable device in the
home environment.

The primary goal of the PD pilot is to explore the capability of detecting meaningful
worsening of the global status or of the individual motor or non-motor aspects of Parkin-
son’s disease. This is performed by investigating the use of PRO and wearables-based
data in combinations that can predict the measurements in classical PD scales, such as
the MDS-UPDRS and QoL-related measures, the MoCA cognition scale (members of each
medical partner undertaking a pilot study—NKUA, FISM and UHB—have completed the
appropriate training required for use of the MoCA test) and anxiety/depression scales. A
complementary objective is to correlate simple device recording during sleep to specific
PD-related sleep scales and to polysomnographic recordings.

The MS pilot engages in the line of rehabilitation research, conducted by the Italian MS
Foundation, and focuses on key aspects such as the use of predictive systems to improve
decision support systems for multiple sclerosis and the use of wearable technology (from
sensors to electronic patient reported outcomes) in MS. The end goal of the MS pilot
study is to test AI/ML-based algorithms that are able to predict the risk of developing a
relapse in multiple sclerosis. Relapses are one of the cardinal features of MS. Relapses are
the unprovoked and unforeseen temporary worsening of physical disability, sometimes
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causing permanent severe disability [20]. Relapses are extremely important for the QoL
of PwMS and have a major influence on treatment decisions [21]. However, their timely
diagnosis is often difficult.

Therefore, a characteristic research interest of the MS study is to explore the use of
combined PRO and wearable-provided data as input for relapse prediction algorithms.

The stroke rehabilitation pilot aims to use the data modalities available in ALAMEDA
(see Section 2.3) to complement and extend the information obtained through typical
processes applied to chronic patients that have suffered a stroke. The follow-up on the cog-
nitive and motor rehabilitation process of stroke patients is an important activity towards
ensuring that patients (especially chronic ones) can make steady steps towards regaining
their autonomy and improve their quality of life. Due to a high number of patients with
stroke-related motor and neurocognitive deficits [22], the long-term accessibility of this
group of patients to rehabilitation centers remains low, even in well-developed countries.
Thus, the purpose of the extended monitoring implemented in ALAMEDA is to allow
physicians to have a continuous update on the patient rehabilitation process in between
clinical visits.

The characteristic research interest of the stroke pilot is to explore the support provided
by AI/ML algorithms to distinguish between different levels of severity for movement and
cognitive impairment as quantified by standard neurological tests (see more in Section 2.4).
A complementary objective is to develop a ML approach to detect the execution of reha-
bilitation exercises based on input from wearable devices (notably, accelerometer-based,
wrist-worn bracelets).

The previous considerations motivate the study protocols and data collection journeys
that we detail in the sections to follow.

2. Materials and Methods

The ALAMEDA Pilot studies are 1-year longitudinal observational studies in PD, MS
and stroke that are part of the ALAMEDA project, financed from the European Union
Horizon 2020 research and innovation program, under grant agreement No. 101017558.
One of the central objectives in the project is to design a continuous digital transformation
methodology that makes the process of continuous, remote monitoring using wearable
devices and mobile applications for patient reported outcome and experience submissions
operational. A specific goal is also to assess the feasibility of data collection by monitoring
participants’ adherence to the scheduled requests and usability of the toolkit by means of
validated questionnaires. The type of registered data and the process by which they are
collected are conceived so as to closely fit the particularities of Parkinson’s disease, multiple
sclerosis and stroke care necessities.

In this section, we start by defining the characteristics of each pilot study in terms
of spatio-temporal coordinates, number of participants and their inclusion and exclusion
criteria, as well as the main objective of prediction (see Section 2.1). We then detail the
data collection journey, describing the set of devices and applications used for registering
data (Section 2.2), and determining the exact content and schedule of data collection proper
to each use case (PD, MS and stroke—Section 2.3). The list of intermediate and final
prediction objectives, as well as conditions for raising alerts over collected data, are detailed
in Section 2.4.

2.1. ALAMEDA Pilot Studies

The ALAMEDA project focuses on pilot studies for Parkinson’s disease (PD), multiple
sclerosis (MS) and rehabilitation after stroke. All the studies are observational in nature,
meaning that no direct intervention in the typical medical treatment protocol for each of
the mentioned diseases is performed during the pilots. The study duration per patient is of
1 year, and each pilot takes place between June 2022 and September 2023.

It is worth noting that the project has a significant exploratory role. It is focused on
research into identifying and designing a novel process of data collection that involves
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combinations of PRO and wearable device based data streams. We subsequently investi-
gate the potential of these data streams to predict outcomes of disease-specific standard
medical tests (or a change in these outcomes from one milestone to another). Under these
considerations, the temporal (one year for the actual monitoring of all patients) and human
resource constraints of the project reflect themselves in the number of patients that can
actively be enrolled in the pilot studies.

In what follows, we present the typical condition of patients for each disease that will
lead to their inclusion in the observational studies.

2.1.1. Parkinson’s Disease

The typical subject for the present observational study is a middle-to-older aged
person, either male or female, with a proven diagnosis of advanced hereditary Parkinson’s
disease. The range of persona selected for the pilot includes people with different habits
but with the ability to perform the various foreseen exercises and tasks.

A total of 15 participants are selected from the group of patients with advanced PD,
who are followed at the Special Outpatient Clinic of Parkinson’s Disease and Related
Movement Disorders at the First Department of Neurology of the National and Kapodis-
trian University of Athens (NKUA), at Eginitio Hospital. Inclusion/exclusion criteria are
detailed in Table 1. The availability of a caregiver who can assist, if needed, in aspects
of the study is desirable but not necessary. There are no restrictions in patient selection
regarding race, ethnicity or sex, but the age group is circumscribed (30 to 75) so as to
be, on the one hand, somewhat representative of the PD population at large and, on the
other, avoid comorbidities associated with aging that may overshadow the effects of PD
itself. Note that the advanced PD stage refers to that time over the disease course when
motor and non-motor fluctuations and dyskinesia are encountered [23]. The H&Y 2.5
or less at the “on” phase is chosen since the ALAMEDA PD pilot requires advanced PD
patients with fluctuations to monitor with sensors. The exploratory nature of the PD pilot,
requiring PRO submission and wearing of devices, leads us to exclude the confounders
(including the age group of 75, which is not familial with the use of sensors). A MoCA
score of 25 higher is generally considered normal, while a score of 18 to 25 can indicate
mild cognitive impairment, and 10 to 17 can indicate moderate impairment. A score of less
than 10 indicates severe impairment [24]. A diagnosis of PD with dementia is made upon
the MDS recommendations [25]. Study participants are asked to return for re-evaluation
to the clinic at 3-month intervals, because 3 months is the interval that is common in the
NKUA movement disorder clinic where PD patients are examined.

Table 1. Inclusion and exclusion criteria for the ALAMEDA PD pilot study.

Inclusion Criteria Exclusion Criteria

- Diagnosis of PD [26]
- Age 30–75
- Advanced PD, as defined by the presence of
even minor motor complications
(fluctuations or dyskinesias)
- H&Y 2.5 or less at “on” phase
- cooperative-excited about participating
in study-motivated
- ability to use smart devices
- Cognitively intact (MOCA Score ≥ 25)
- able/has the means to return for re-evaluation
to our clinic at 3-monthly intervals

- Psychiatric comorbidity (psychosis,
major depression) that may interfere
with his/her ability to engage in the study
- Significant comorbidities (orthopedic,
cardiovascular, respiratory, etc.) that
may restrict ADLs.
- Not able to follow instructions
regarding the application and use of
sensors, including the necessary
interactive components
- Presence of Dementia
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2.1.2. Multiple Sclerosis

The typical subject for the MS observational study is a young-to-middle age person,
either male or female, with a proven diagnosis of a relapsing–remitting form of MS. Partici-
pants included in the pilot may present different levels of disability (from minimal to mild)
and different habits. However, all of them are able to perform the task foreseen by the MS
use case either independently or with minimal support. The study enrolls 20 subjects with
MS who receive care in one of the rehabilitation centers managed by the Italian Multiple
Sclerosis Society. The key inclusion and exclusion criteria for participation in the study
are presented in Table 2. We note that MS can strike at any age but is typically identified
between the ages of 20 and 30 [27]. Relapsing/remitting multiple sclerosis (RR-MS) makes
up 85% of MS cases [28]. As for natural history, after 15 years, about 60% RR-MS patients
will convert to secondary progressive MS (SP-MS) [29]. However, known biomarkers
of disease activity are currently less useful in detecting the transition from RR to the SP
form [30]. Therefore, to maximize the possibility of monitoring health parameters from
participants in an active phase of MS, we consider as exclusion criteria an age greater than
30 + 15 = 45 years. Concerning the other inclusion criteria, we focus on patients with low
disability (here, EDSS < 4.5) since the use of wearable technology has been validated in this
population (see Yousef at al., 2017 [31] for a review). The patients are followed up with for
1 year after ALAMEDA participation in order to register any relapse in this period (making
the total monitoring time 2 years). This is used to check whether any of the employed
ALAMEDA data sources (see Section 2.2) are predictive of the event.

Table 2. Inclusion and exclusion criteria for the ALAMEDA MS pilot study.

Inclusion Criteria Exclusion Criteria

- Age 18–45, males and females
- Definite diagnosis of relapsing-remitting MS
according to the revised 2017 McDonald criteria;
- Score of less than or equal to 4 on the Expanded
Disability status Scale (EDSS)
- Being relapse free in the last month
- Acquaintance to smartphones and technology use
availability of reliable internet connection
- Signed consent form

- Psychiatric comorbidity (psychosis, majordepression) that
may interfere with the ability to engage in the study
-Significant neurological or orthopedic comorbidities
- Not able to follow instructions regarding the application
and use of sensors, including the necessary
interactive components
- Severe cognitive deficit (MOCA Score < 25)

2.1.3. Stroke Rehabilitation

Fifteen stroke patients that are engaged in the stroke rehabilitation process are enrolled
at the Department of Neurology of the University Emergency Hospital of Bucharest. The
criteria for inclusion or exclusion in the study are presented in Table 3. It is to be mentioned
that patients with severe neurological deficits are excluded from the study, as this type of
patient is not able to use the devices proposed by the ALAMEDA project.

The typical subject for rehabilitation after the stroke pilot study is an adult falling
within a wide age group (18–85) but with a distribution skewed heavily toward those over
50 years in age, as the prevalence of stroke increases with age; however, about 25% of
ischemic strokes occur in middle-aged patients who are still working [32]. The subject has
suffered a stroke, whereby their motor, balance, gait or neurocognitive abilities are impaired.
Stroke survivors face a long-time chronic condition, while rehabilitation is usually started
during hospitalization and continued for at least 6 months in a neuro-rehabilitation facility
or at home, usually under the guidance of a specialist. This period is considered the most
important for neuroplasticity after stroke, especially the first weeks after the event [33],
which is why we chose to enroll patients that were hospitalized for stroke in the last month.
Most stroke patients experience muscle weakness of the upper or lower limbs. Additionally,
difficulty in walking and maintaining balance are two of the most devastating sequelae of a
stroke, and the restoration of gait is often one of the primary goals of rehabilitation.
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Table 3. Inclusion and exclusion criteria for the ALAMEDA stroke pilot study.

Inclusion Criteria Exclusion Criteria

- Age 18–85 years
- Hospitalized for stroke in the last month
- Ability to use smart devices
- Patient is able/has the means to return
for reevaluation and to be closely monitored
during at-home neuro-rehabilitation

- Aphasia
- Complete bilateral blindness
- Patients who have plegic limbs with 0/5 points
on the MRC scale or severely impaired muscle
strength of less than 3/5 points on the MRC scale
- Patients that are completely non-ambulatory
at the time of their hospital discharge
- Patients with severe neurocognitive disorders
that score less than 10 points on a MOCA
questionnaire taken before discharge from the hospital

2.1.4. End-User Engagement

As digital technology continues to evolve rapidly and healthcare providers and ACT
policymakers work hard to adapt, there is a high risk that the patient perspective may be lost.
Thus, meaningful patient engagement is set at the top of the priorities of ALAMEDA, where
the learnings of previous projects and experiences are considered to ensure it is carried out
in the most effective, participatory and purposeful way. Specifically, ALAMEDA relies upon
the participation of the Italian Multiple Sclerosis Society Foundation (FISM) as a key partner
and former coordinator of the MULTI-ACT project (https://www.multiact.eu/, accessed
on 11 August 2023), exploiting the gained knowledge and guidelines to build a strong
end-user (and specifically) patient-engagement route along the whole project’s duration.
To this end, within ALAMEDA, two types of steering and consulting committees are
established (please refer to public project’s deliverables (https://alamedaproject.eu/public-
deliverable/, accessed on 11 August 2023) D7.1 and D7.3): the Engagement Coordination
Committee (ECT) and three local community groups (LCGs) in the respective countries,
i.e., Italy (multiple sclerosis), Greece (Parkinson’s disease) and Romania (stroke). LCGs
are composed by 9–15 end users and animated by the respective patients and clinicians
sitting in the ECT so as to secure engagement at the national and disease-specific levels and
provide valuable feedback as the research work progress. The aforementioned committees
have also participated proactively in the design phase by providing their preferences with
regard to the data collection modalities and frequency, as well as the use of the proposed
wearable and sensors (as they are presented next). They are continuously actively engaged
to support the research team throughout the project concerning the next steps in order to
elevate its acceptability and usefulness.

2.2. ALAMEDA Data Collection Tools

To implement the observational studies described previously, a set of wearable devices
are employed, and novel customized mobile applications are developed to enable the
underlying data collection. The list of devices and software applications is presented in this
section, while a mapping of their capabilities to the type of variables of interest for each
pilot study follows in Section 2.3.

2.2.1. ALAMEDA Wearable Devices

The set of devices to be used in ALAMEDA pilots covers the retrieval of informa-
tion from two main health status domains: general activity/motor function and sleep. A
schematic of the type of considered devices is shown in Figure 1. Apart from the health
information domains they cover, the devices can be further classified by two criteria: (i) con-
tinuous vs. limited duration usage, and (ii) commercial vs. experimental development.
Their complete list, their usage mode, and the extracted metrics are summarized in Table 4
and described more closely in what follows.

https://www.multiact.eu/
https://alamedaproject.eu/public-deliverable/
https://alamedaproject.eu/public-deliverable/
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Figure 1. A schematic of the set of wearable devices used in ALAMEDA pilot studies: smart watch,
accelerometer bracelet, IMU-sensor belt, ground force sensitive insoles, smart mattress. The figure
shows the points on the human body where each device will be worn.

Table 4. List of ALAMEDA devices and their intended use.

Device Model
Usage Method

(Continuous vs.
Limited Duration)

Extracted Metrics

Smart Watch Fitbit Versa Lite
Fitbit Charge 4

continuous

activity: no. of steps, intensity level periods,
distance traveled, burned calories
sleep: sleep stage durations (light, deep, and REM),
sleep efficiency
general: heart rate, blood oxygen levels

Smart Bracelet ActivInsights
GENEActiv

limited duration

activity summary: no. of steps, intensity level periods
sleep: basic sleep stages, sleep efficiency
raw accelerometer data: gait/balance issue
classification

Smart Insoles Novel Loadsol-ap limited duration

gait metrics: no. of steps, cadence, step cycle time,
loading rate, factor of imbalance
raw plantar force data: gait or balance
issue classification

Smart Belt NTNU Prototype limited duration raw IMU data: basic activity recognition,
gait/balance issue classification

Under Mattress
Sleep Sensor Withings Sleep Mat

limited duration (A
limited supply of sleep

mattresses is available for
the MS and Stroke

pilot studies. An extended
but still limited duration

use will be facilitated
for these cases)

sleep stage durations, sleep efficiency,
sleep apnea and snoring detection

Mattress Topper ENORA Prototype limited duration sleep position heatmap,
environment temperature, light level, sound level

Smartwatch

The participants are given a Fitbit Versa series (https://www.fitbit.com/global/eu/
products/smartwatches/versa-lite (accessed on 11 August 2023), https://www.fitbit.com/
global/us/products/smartwatches/versa4 (accessed on 11 August 2023), https://www.fitbit.
com/global/us/products/smartwatches/versa (accessed on 11 August 2023)) smartwatch to
wear continuously throughout the study. From the smartwatch, we collect objective general
information about (i) physical activity levels during the day (number of steps, distance
traveled, calories burned, and minutes spent per physical activity level—inactive, light,
moderate and vigorous), and (ii) sleep information (minutes spent in each sleep stage: light,
deep, and REM—sleep efficiency), and (iii) general health condition—heart rate statistics

https://www.fitbit.com/global/eu/products/smartwatches/versa-lite
https://www.fitbit.com/global/eu/products/smartwatches/versa-lite
https://www.fitbit.com/global/us/products/smartwatches/versa4
https://www.fitbit.com/global/us/products/smartwatches/versa4
https://www.fitbit.com/global/us/products/smartwatches/versa
https://www.fitbit.com/global/us/products/smartwatches/versa
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and oxygen levels. The literature has shown that Fitbit devices provide a valid estimation
of the number of steps in both laboratory [34–36] and free-living conditions [37–39], with
accuracy between 0.9 and 1.0.

Smart Bracelet

Participants will wear an ActiveInsights GENEActiv bracelet (https://www.activinsights.
com/technology/geneactiv/, accessed on 11 August 2023) during a period of intense moni-
toring (see more in Section 2.3. The GENEActiv has a triaxial accelerometer with sensitivity
in the −8–+8 g range, skin temperature and luminosity sensors, and has the capability
to record data continuously for 15 days at a 50 Hz sample rate. The device is specialized
for activity and sleep tracking and has been used in over one hundred clinical trials or
observational studies [40]. Some extractable metrics overlap with the Fitbit capabilities (e.g.,
number of steps, minutes spent in different physical activity levels, and sleep efficiency),
but one key difference is the access to raw accelerometer data, which enables the applica-
tion of custom ML algorithms for the detection of (i) tremor, dyskinesia or hypokinesia
episodes in PD patients, (ii) the execution of physical rehabilitation exercises in stroke
patients or (iii) the smoothness of upper limb movements, stumbles or falls in MS patients.
An additional benefit of the sensor is the ability to be attached to other body parts (e.g.,
waist or ankle) apart from the wrist.

Smart Insoles

During the defined period of intense monitoring, patients are asked to wear a pair of
Loadsol-AP insoles (https://www.novel.de/products/loadsol/, accessed on 11 August
2023), developed by Novel Gmbh, which are capable of sensing the ground reaction force
exerted at two distinct areas of the foot, the heel and the forefoot. Measurements are sent
with a frequency of up to 200 Hz, over a Bluetooth connection, to the user’s smartphone.
These insoles are used to study walking and running gaits in real-world settings [41,42].
In the ALAMEDA pilot studies, the insoles can readily provide accurate measurements
related to gait metrics, such as step number, cadence, step cycle time, loading rate, factor
of imbalance (disproportionate loading of one foot compared to the other), or peak push
force. Furthermore, analysis of the raw data can reveal the degree of balance problems
or the severity of a walking defect/gait instability, which is of relevance specifically in
the stroke study, or even identify patterns indicating improvement or not during the
rehabilitation sessions.

Smart Belt

This is a prototype wearable device developed by a member of the project consortium
(Norwegian University of Science and Technology—NTNU) to record patient gait and
physical activity data. The belt is composed of three motion tracking sensors mounted on a
belt (one at the bottom of the spine and two on the sides of the waist). Each sensor is built
using an inertial measurement unit (IMU) to record the linear and angular acceleration
of the body and a Wi-Fi-based communication system to send data to a cloud platform
(the ALAMEDA Research Data Management Platform). The sensors have a continuous
operation lifetime of 20 h after a full recharge and have the ability to store the collected
data locally for up to 30 days. The sensors are worn by the patients during the intense
monitoring period to collect information in order to complement the data from the insoles
in terms of specific basic activities (e.g., walking vs. standing or lying), as well as gait or
balance issues.

Under-Mattress Sensor

Patients will use a commercial, CE certified, under-mattress pneumatic sensor (With-
ings Sleep Mat (https://www.withings.com/ro/en/sleep-analyzer, accessed on 11 August
2023)) to obtain more accurate and complementary data for the analysis of their sleep
cycles in a completely unobtrusive manner. The device performs continuous heart rate

https://www.activinsights.com/technology/geneactiv/
https://www.activinsights.com/technology/geneactiv/
https://www.novel.de/products/loadsol/
https://www.withings.com/ro/en/sleep-analyzer
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measurement while sleeping and has embedded audio sensors that help detect sleep apnea
and snoring using proprietary algorithms. The Withings sleep mat is easy to set up and
can operate continuously once plugged in. The collected sleep data are highly relevant
for all three pilot studies but especially for the PD case, where additional properties for
the identification of sleep disorders are under investigation in collaboration with the sleep
clinic of Attikon Hospital in Athens.

Mattress Topper Pressure Sensor

This is a prototype device developed by a member of the project consortium (ENORA
Innovation) and intended for the advanced monitoring of sleep. The device will be used
at the premises of Attikon Hospital (Greece) in the sleep clinic, where participants of the
PD use case will also undergo a sleep study at the intense monitoring periods and upon
their enrollment. This procedure is for evaluation purposes since it is a prototype device
and if successful, then it will also be available for the remaining studies of MS and stroke.
The mattress topper is built of a flexible conductive fabric and pressure sensitive plastic
(velostat) displayed in a 16 × 16 grid, which can be laid over a mattress, underneath the
bed sheet. The prototype device records a heatmap of body postures at five frames per
minute and has additional sensors for monitoring the sleep environment (sound level, light
level and temperature). The device is used in correlation with a polysomnography analysis
to annotate sleep disturbances and investigate the predictive power of sleep position and
environment condition variables on the quality of sleep.

2.2.2. Applications for Patient Reported Outcome Collection

In the ALAMEDA Project, a suite of mobile applications enables the interaction of
the patients with the ALAMEDA platform to submit patient reported outcomes (PROs)
and receive notifications and alerts, as well as visualize and keep track of their current
health status with regards to various aspects (e.g., sleep, gait, mobility, and psychological).
Collectively, the developed applications form the ALAMEDA Digital Companion. The
functionality of the components is briefly described in what follows.

The WellMojo application is the central Digital Companion App interface and the
application that is responsible for the integration of the rest of the applications in the
ALAMEDA platform. WellMojo is the main mobile user interface for the target users,
providing daily support in terms of assessing their health status and enabling them to
self-manage their condition through coaching and tips. WellMojo provides a dashboard
allowing for the presentation of patient related data in the nutrition, sleep, social, mood and
physical activity aspects (including also details and historical data), as well as presentation
and management of (standard medical and pilot study specific) questionnaires and their
answers. The applications offers push notifications acting as reminders for taking actions or
for presenting PMSS-related information. Moreover, WellMojo implements a very simple
annotation interface, by which patients can mark intervals and timestamps of executing
certain activities (e.g., physical rehabilitation exercises), experiencing symptoms (e.g.,
tremor and stumbling), or medication intake. In ALAMEDA, medication affecting the
symptoms of the disease is considered (e.g., levodopa—L-DOPA [43] in PD) in order to,
apart from keeping a diary, also provide information about the measurements from the
wearable sensors.

The ALAMEDA Conversational Agent is responsible for implementing an alternate
means of PROs collection, especially for questionnaires which are complex in nature (e.g.,
where the answer to one question influences the kind of questions asked next) and which
are suitably modeled as conversations. Additionally, a particular focus is given to questions
where patients respond regarding their emotional well-being, perception of social support
and quality of life. To ensure a unified way to interpret and quantify the data collected
from all the participants, predefined options (e.g., as buttons) are presented to the user for
all standardized questions prepared by medical professionals. To take advantage of the
conversational nature that a chatbot offers and make the interactions more personal, data
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in a free-text form are also collected. A notification system is developed to maintain user
engagement and ensure that the established questionnaire submission schedule is respected.
Additionally, follow-up notifications are sent as reminders, in case some questions were
left unanswered.

The mood estimation android application (MEAA) is responsible for monitoring
the user facial expressions and estimating his/her mood accordingly. The application
was developed as a service and is integrated with other components of the ALAMEDA
Digital Companion. MEAA runs in the background, minimizing distraction on behalf
of the user, and is active only while the user is actively engaging with WellMojo or the
ALAMEDA Conversational Agent. The service engages the front camera of the smartphone
to receive incoming frames, which are analyzed locally by the application to classify
the facial expression as one of “angry”, “disgust”, “fear”, “happy”, “sad”, “surprise” or
“neutral” categories.

The virtual keyboard is designed to assess the typing patterns of a user on a mobile
device. It runs as an installed keyboard service on an Android smartphone and works
similarly to the Android OS default keyboard, including all modern functionalities, such
as word prediction and auto-correction. The virtual keyboard application is designed to
unobtrusively record and analyze typing patterns of smartphone users and relate them to
certain conditions, such as depressive states.

Apart from the above-mentioned applications installed on the user’s smartphone,
ALAMEDA features two tablet applications, both developed within the consortium of
ALAMEDA, which are used for cognitive and motor ability evaluation at the specific
milestones defined by the medical partners of the project during the pilot studies.

The virtual supermarket test application (VST) is an app designed to assess older
adults’ cognition through a simple task modeled on an everyday activity. The application
aims at activating a multitude of cognitive processes namely visual and verbal memory,
executive function, attention and spatial navigation, with the emphasis placed on the exec-
utive functionality. The latest version of the VST [44] includes advanced navigation metrics
with the virtual space divided into three zones (green, yellow and red). Different zones
represent different deviations from a pattern of optimal navigation for task completion.
The diagnostic utility of the VST has been validated in different populations and it has also
been validated against electroencephalography (EEG) biomarkers.

The line-tracking test application is designed to assess older adults’ hand dexterity.
Developed within the NoTremor EU project (https://cordis.europa.eu/project/id/610391,
accessed on 11 August 2023), the line-tracking test measures the ability to follow a randomly
moving target (the cyan line) while ignoring the distracting target (the red line). The line-
tracking test can identify different components of the hand movement (e.g., reaction time,
movement time, and several internal time delays).

2.2.3. ALAMEDA Data Collection Conceptual Architecture

To enable the collection of data from the previously mentioned device and software
application sources, dedicated and integrated information flows are set up.

Figure 2 shows the component-wise overview of the data collection architecture. There
are dedicated services for each wearable device, which operate either automatically (e.g.,
for the Fitbit smartwatch) or on demand (e.g., data collection for the GENEActiv bracelet
or the Loadsol insoles). Separate collection services are set up for the software applications
composing the ALAMEDA Digital Companion used for PROs—the WellMojo application
and the Conversational Agent interface. All questionnaire (see Section 2.3) and relevant
question answers (see Appendix A Tables A1–A3) submit data to the ALAMEDA semantic
knowledge graph (SemKG), which uses a custom-designed ontology for the vocabulary
of collected data modalities. The SemKG also receives aggregate values (e.g., step counts,
activity levels, sleep stage durations, and average load balance) from the data collection
processes that manage the smart devices. The processing and evaluation of data (e.g., to
detect dyskinesia or tremor events, to detect rehabilitation exercise sessions, and to classify

https://cordis.europa.eu/project/id/610391
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the result of a medical test during milestone evaluations) is performed using a set of AI
tools that are accessible as RESTful API services. Data from the SemKG, as well as the
results obtained from the AI toolkit can be inspected in a browser-based UI called the
expert’s dashboard, where medical professionals can view the collected data in a table form,
as well as in a graphic manner.

Figure 2. A component-wise overview of the ALAMEDA data collection architecture outlining the
relevant information flows and visualization methods.

The components of the ALAMEDAA AI toolkit are shown in Figure 3. Note again
the central role of the SemKG service as a repository for the input (PRO data or aggregate
metrics from the smart devices), as well as the prediction output of AI services. Data
annotation occurs in two manners. During milestone clinical visits (see Section 2.3), medical
professionals manually annotate tests with the name, timestamp and result of the medical
test or exercise session. Patients can also annotate manifestations of their disease (e.g.,
tremor or dyskinesia events, and stumbling), medication intake (especially for PD patients),
or the execution of exercise sessions (e.g., rehabilitation exercises for stroke patients) using
a simple, single-button mobile interface with predefined options per pilot study, which is
part of the ALAMEDA Digital Companion.

Regarding the available AI services, two of them focus on a multi-modal evaluation
of the patient’s emotional status using conversational and facial expression input. One
service is dedicated to sleep monitoring, providing analyses, which are further detailed in
Section 3.3. The Gait Analysis Toolkit encompasses a larger set of predictions for motor
impairment detection and exercise session detection based on input from wearable devices,
such as the NTNU smart belt, the GENEActiv bracelet or the Loadsol insoles (see detection
targets in Table 5). The Predictor Variable Time Series Classification Service is the workhorse
service hosting the set of models developed to make predictions of the patient health status
in various longitudinal and cross-sectional prediction setups. The possible targets are listed
in Tables A4–A6 in Appendix B, while the model development is detailed in Section 3.2.
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Figure 3. Overview of the ALAMEDA AI Toolkit services and their interdependence. Dotted lines
in the figure indicate direction of communication between the toolkit services. For example, the
Predictor Variable Timeseries Classification Toolkit receives input from all the other toolkits (sleep
assessments, motor symptom or activity summary aggregates from the Gait Analysis toolkit, etc.)
through the SemKG API and will in return store its prediction results for patient health status in the
Semantic Knowledge Graph.

Table 5. Prediction objectives for raw data collected from wearable devices.

Prediction Target Pilot Study Description Input Devices

Tremor, Dyskinesia and Hypokinesia
detection PD

Real-time detection of tremor, hypokinesia
and dyskinesia episodes based on
unlabelled data under free-living conditions
- onset and the end of each episode
- episode duration
- number of each type of episodes per day

NTNU Smart Belt
GENEActiv bracelet
- attached to wrist of most affected arm,

ankle or shank
Fitbit smartwatch

Restless Leg Syndrome Detection
PD,
MS,
stroke

Real-time detection of “restless leg” episodes
during sleep

GENEActiv bracelet
- attached to ankle or shank
NTNU IMU sensor
- attached to ankle or shank

Physical Rehabilitation Exercise
Detection Stroke Real-time detection and classification

of rehabilitation exercise execution

GENEActiv bracelet
- attached to wrist
NTNU Smart Belt

2.3. ALAMEDA Data Collection Journey

The ALAMEDA data collection journey refers to the experience that a patient enrolled
in an ALAMEDA pilot study will have in terms of the exact variables of information
that will be collected from them using the devices and software applications presented in
Section 2.2, the schedule of interacting with these and the existence of special activities to be
performed in order to better assess disease and non-disease related factors, which influence
living with the PD, MS or stroke. The aforementioned “journey” was defined with the help
of the clinical partners of the project and customized to the needs and requirements posed
by each use case individually.

For each study in particular, we highlight (i) the list of information variables we
collect and the means by which this is performed, and (ii) the data collection schedule,
distinguished into continuously monitored parameters and PROs and intense (special)
monitoring periods. The latter is formed as a data collection protocol summarized in Table 6.
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The collected variables are organized into five health status categories: (i) mobility,
general motor or physical function; (ii) sleep disorders; (iii) mental and cognitive ability;
(iv) emotional status; and (v) quality of life and daily living.

Table 6. Monitoring protocols for ALAMEDA pilot studies.

Data Collection
Protocol Description Time Period Used Devices

Continuous
Monitoring

Data collection process happening
continuously throughout the study,
involving:
- precisely scheduled PROs
- activity monitoring using Smart Watch
- sleep monitoring using Smart Watch

Throughout pilot study
Smartphone for PROs
Fitbit Smart Watch

Intense
Monitoring
Period

Data collection process that happens
over 1–2 weeks prior to a study
milestone, involving the use of
all available devices and requests
for specific patient activities.

- 1 week prior to every
3-month milestone (PD)

- 2 weeks prior to every
6-month milestone (MS)

- 2 weeks prior to every
6-month milestone (Stroke)

Smartphone for PROs
Fitbit Smart Watch
Withings Sleep Mat
GENEActiv bracelet
NTNU Smart Belt
Novel Loadsol Insoles
ENORA Mattress
Topper

Table 6 shows a phase that operates continuously throughout the pilot to collect data
and a phase that calls for more intense monitoring but of limited duration, using additional
devices devices and requests for activities from the patients. The intense monitoring is
limited to a maximum of two weeks at every milestone (as set by each pilot) in order
to reduce the patient load and to become accustomed to the recording and charging
limitations of some devices (e.g., the GENEActiv bracelet can record data at 50 Hz for up
to two weeks before a recharge and reconfiguration are needed). It is worth noting that
the specific duration of the intense monitoring period for each pilot study is the result
of a combination of two factors, the activity and monitoring protocol proposed by each
study (see following subsections), and the preferences of patients as resulting from the
research study co-design sessions carried out by the local community groups (LCGs) (cf.
Section 2.1.4), which expressed, among others, the likelihood of adherence to the intense
monitoring requirements as a function of duration. An example of a difference between the
pilot studies is the preference of PD patients for an intense monitoring period of one week,
as opposed to the two weeks preferred by those with MS and stroke.

2.3.1. Study Design for PD Pilot

The Parkinson’s disease pilot study will enroll 15 patients with advanced PD who are
followed at the Special Outpatient Clinic of Parkinson’s disease and Related Movement
Disorders at the First Department of Neurology of the National and Kapodistrian University
of Athens (NKUA), at Eginitio Hospital. The study considers four milestones in-clinic
evaluations at 3-, 6-, 9- and 12-month time marks. Each milestone is preceded by a 1 week
intense monitoring period.

For the Parkinson’s disease study, the set of variables to be monitored are presented
in Table 7. For each variable, the name, possible range of values, and acquisition method
(PROs input application or set of devices) are indicated, as well as the type of the time
period of collection, being either continuous or of limited duration.
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Table 7. PD pilot data collection journey—list of monitored variables and their method of collection.

Variable Description Data Value
Range

Acquisition
Method

Used
Devices

Domain I—Mobility, general motor or physical function

Step count,
periods of relative
immobility/slowness
of movement

Continuously monitored step count
and other features of
general mobility in daily life

step count: integer (0–15,000)
periods of mobility: seconds
(0–14,400)

Continuous Monitoring
- eHealth device Fitbit Smart Watch

Heart rate, SpO2 levels Monitoring of daily heart-rate and
blood-oxygen levels

heart rate: integer (30–200)
blood-oxygen levels: percentage
(0–100)

Continuous Monitoring
- eHealth device Fitbit Smart Watch

Physical Activity Amount Exact time periods of inactive, light,
medium or vigorous activity seconds (0–14,400)

Intense Monitoring
every 3 months
- eHealth devices

Fitbit Smart Watch
GENEActiv Bracelet

30 min intense walk
Intense, outdoor half-hour walk
using smart watch, bracelet,
belt and insoles

all metrics from previous rows
avg. cadence per 30 s: integer
loading rate: N/s (speed of normal
force applied to body)
factor of imbalance: percentage
(disproportion of load between feet)
peak force: N (maximum force push
while walking)

Intense Monitoring
every 3 months
- eHealth devices

Fitbit Smart Watch
GENEActiv Bracelet
NTNU Smart Belt
Loadsol Insoles

OAB-Q Assess subjective perception of
bladder problems integer, questionnaire score: 6–48

Continuous Monitoring
- PRO on smartphone

(every month)
Smartphone

MDS-UPDRS II Scale of report of ADLs based
on motor activities integer, questionnaire score

Continuous Monitoring
- PRO on smartphone

(every week)
Smartphone

MDS-UPDRS IV Levels of motor fluctuations and
dyskenisias integer, questionnaire score

Continuous Monitoring
- PRO on smartphone

(every week)
Smartphone
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Table 7. Cont.

Variable Description Data Value
Range

Acquisition
Method

Used
Devices

Domain II—Sleep disorders

Pittsburgh Sleep
Quality Index (PSQI)

Self-administered questionnaire to
assess sleep patterns integer, questionnaire score: 0–21 Continuous Monitoring

- PRO on smartphone Smartphone

General Sleep Patterns

Continuous monitoring of general
sleep stage duraitons using
smart watch and under mattress
sensor

total bed time: hours (0–12)
light sleep: hours (0–12)
deep sleep: hours (0–12)
REM sleep: minutes (0–240)
apnea: boolean (true/false)
snoring: minutes (0–240)

Continuous Monitoring
- eHealth devices

Fitbit Smart Watch
Withings Sleep Mat

Intense Sleep Monitoring
Sleep monitoring during pilot
milestones using eHealth devices
and a polysomnograph

Previous row metrics +
polysomnography analysis

Intense Monitoring
every 3 months
- eHealth devices

ENORA Sleep Mat
Fitbit Smart Watch
GENEActiv Bracelet

Domain III—Mental and cognitive ability

PDQ

Self-report measure of cognitive
dysfunction, investigating: attention,
retrospective memory,
prospective memory, and planning

integer, questionnaire score: 0–80
Continuous Monitoring
- PRO on smartphone

(every month)
Smartphone

Keystroke dynamics Detailed timing of typing
on smartphone

Enum: classes of abnormal
typing patterns

Continuous Monitoring
- eHealth devices Smartphone

Line Tracking Test
Self-administered test on tablet
to assess various aspects
of arm/hand movement

Reaction time: ms
Movement time: msec
Internal time delays: msec

Intense Monitoring
every 3 months
- eHealth devices

Tablet

Virtual Supermarket Test
Self-administered test based
on a 3D serious game
to assess cognitive decline

time to completion: ms
(scores above 215,000 ms
indicate possible
cognitive impairment)

Intense Monitoring
every 3 months
- eHealth devices

Tablet
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Table 7. Cont.

Variable Description Data Value
Range

Acquisition
Method

Used
Devices

Domain IV—Emotional status

Facial Expression Analysis
Estimate mood using facial
expression analysis enabled by
MEAA (see Section 2.2.2)

Enum: mood class and probability Continuous Monitoring
- eHealth device Smartphone

PHQ-9 Monitor the severity of depression
and response to the treatment integer: questionnaire score (0–27)

Continuous Monitoring
- PRO on smartphone

(every month)
Smartphone

Domain V—Quality of life and daily living

MFIS
Assessment of the effects of fatigue
in terms of physical, cognitive
and psychosocial functioning

integer: questionnaire score (0–84)
Continuous Monitoring
- PRO on smartphone

(every month)
Smartphone

Food Habits Questionnaire
(FH-Q)

Self-report questionnaire measuring
food intake habits about typical
eating patterns over the past month

integer: questionnaire score (0–18)
Continuous Monitoring
- PRO on smartphone

(every month)
Smartphone

MDS-UPDRS I
Partial (patient-reported) assessment of
non-motor aspects of experiences of
daily living

integer: questionnaire score (0–24)
Continuous Monitoring
- PRO on smartphone
(every week)

Smartphone
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Apart from the set of the standard medical questionnaires considered, the PROs of PD
patients also consist of a number of relevant questions, which inform of the subjectively
rated patient experience of “on”/“off” states, the severity of dyskenisias and other motor
complications, the emotional state and the degree of social interaction. These questions are
scheduled to be answered weekly, but the patient can complete a question session over
the course of several days in the week. The full list of questions and their scheduling is
displayed in Table A1 included in Appendix A.

During the intense monitoring period, the patients follow a protocol to ensure reliable
data and patient adherence. They are given the smart bracelet for one week to wear at
home. The device does not require any interaction by the user (no added burden). The
MDS-UPDRS is performed at the first visit, once when the patient is in the on phase and
once when they are in the off phase. PD patients are instructed to install and calibrate the
Withings mattress at home. Clinicians monitor adherence from the Heath Mate App and
may adopt some strategy to increase it (e.g., messages to remind of mattress use, phone
call to explain again the installation and calibration procedure, and site visits if needed).
Participants are asked to wear the smart insoles and the smart belt and perform a set of
predefined walking tasks during the visit monitoring day. Patients are instructed and
reminded to keep a simple diary of activities performed during the day (selecting from
pre-defined options) using the WellMojo application.

2.3.2. Study Design for MS Pilot

The multiple sclerosis pilot study will enroll 20 patients who receive care and coun-
seling in rehabilitation centers of the Italian Multiple Sclerosis Society, most notably near
the city of Genoa. The study considers milestones of in-clinic evaluations at the 6, 9 and
12 month time marks, whereby each milestone is preceded by a 2-week long intense moni-
toring period. The list of monitored variables, and the acquisition method and frequency,
as well as the used devices, are shown in Table 8.

Similar to the PD pilot, for the MS study, a list of additional non-standard, subjective
experience relevant questions is considered as PROs. In the MS case, the relevant questions
cover all the five health categories, and their main purpose is to ascertain symptoms and
situations experienced by the patients which might be indicative of early-stage disease
relapse. Relevant questions are delivered on a daily basis, but the patient has the option
to postpone the answer for up to one day. The full set of questions and their frequency is
summarized in Table A2, included in Appendix A.

The intense monitoring period for the MS study instructs patients as follows. Par-
ticipants wear the smart bracelet for two weeks (24/7). The device does not require any
interaction by the user (no added burden). They are instructed to install and calibrate
the Withings mattress at home. Clinicians monitor adherence from the Heath Mate App
and may adopt some strategy to increase it. Patients are asked to wear the smart in-
soles about 30 min/day in an active phase of the day. Suggested slots are the way from
home to work (and/or way back), leisure-time walks, daily-life activities at home, and
exercise/rehabilitation. Participants are asked to complete a diary (either digital through
WellMojo App or in paper format) indicating the time of the day they wore the insoles
and the activity they performed, selecting the answer in a multiple choice menu. The
smart belt is worn during one significant day of the intense monitoring period. Patients
select their significant day as one where they perform a motor activity more intensely (e.g.,
rehabilitation exercise session, and leisure-time physical activity). The WellMojo app is
used to keep a diary of the activity performed while wearing the belt.
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Table 8. MS pilot data collection journey—list of monitored variables and their method of collection.

Variable Description Data Value
Range

Acquisition
Method

Used
Devices

Domain I—Mobility, general motor or physical function

Step count,
periods of relative
immobility/slowness
of movement

Continuously monitored step count
and other features of
general mobility in daily life

step count: integer (0–15,000)
periods of mobility: seconds (0–14,400)

Continuous Monitoring
- eHealth device Fitbit Smart Watch

Heart rate, SpO2 levels Monitoring of daily heart rate and
blood oxygen levels

heart rate: integer (30–200)
blood-oxygen levels: percentage (0–100)

Continuous Monitoring
- eHealth device Fitbit Smart Watch

Physical Activity Amount Exact time periods of inactive, light,
medium or vigorous activity seconds (0–14,400)

Intense Monitoring
every 6 months
- eHealth devices

Fitbit Smart Watch
GENEActiv Bracelet

6 min walk test

Sub-maximal exercise test assessing
walking endurance and aerobic capacity.
Participants walk around an indoor
perimeter for a total of six minutes.

metrics from first row
avg. cadence per 30 s: integer
loading rate: N/s (speed of normal
force applied to body)
factor of imbalance: percentage
(disproportion of load between feet)
peak force: N (maximum force push
while walking)

Intense Monitoring
every 6 months
- eHealth devices

Fitbit Smart Watch
Loadsol Insoles

MSWS-12 12-item self-report measure on
the impact of MS on walking ability integer, questionnaire score: 12–60

Continuous Monitoring
- PRO on smartphone

(every 2 weeks)
Smartphone

OAB-Q Assess subjective perception of
bladder problems integer, questionnaire score: 6–48

Continuous Monitoring
- PRO on smartphone

(every month)
Smartphone

AMSQ Unidimensional 31-item questionnaire for
measuring of arm function in MS integer, questionnaire score: 31–186

Continuous Monitoring
- PRO on smartphone

(every 2 weeks)
Smartphone
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Table 8. Cont.

Variable Description Data Value
Range

Acquisition
Method

Used
Devices

Domain II—Sleep disorders

Pittsburgh Sleep
Quality Index (PSQI)

Self-administered questionnaire to
assess sleep patterns integer, questionnaire score: 0–21

Continuous Monitoring
- PRO on smartphone

(every month)
Smartphone

General Sleep Patterns
Continuous monitoring of general
sleep stage durations using
the smart watch

total bed time: hours (0–12)
light sleep: hours (0–12)
deep sleep: hours (0–12)
REM sleep: minutes (0–240)
apnea: boolean (true/false)
snoring: minutes (0–240)

Continuous Monitoring
- eHealth devices Fitbit Smart Watch

Intense Sleep Monitoring
Sleep monitoring during pilot
milestones using eHealth devices
and a polysomnograph

Previous row metrics +
polysomnography analysis

Intense Monitoring
every 6 months
- eHealth devices

ENORA Sleep Mat
Withings Sleep Mat
Fitbit Smart Watch
GENEActiv Bracelet

Domain III—Mental and cognitive ability

PDQ

Self-report measure of cognitive
dysfunction, investigating: attention,
retrospective memory,
prospective memory, and planning

integer, questionnaire score: 0–80
Continuous Monitoring
- PRO on smartphone

(every month)
Smartphone

Keystroke dynamics Detailed timing of typing
on smartphone

Enum: classes of abnormal
typing patterns

Continuous Monitoring
- eHealth devices Smartphone

Line Tracking Test
Self-administered test on tablet
to assess various aspects
of arm/hand movement

Reaction time: ms
Movement time: msec
Internal time delays: msec

Intense Monitoring
every 6 months
- eHealth devices

Tablet

Virtual Supermarket Test
Self-administered test based
on a 3D serious game
to assess cognitive decline

time to completion: ms
(scores above 215,000 ms
indicate possible
cognitive impairment)

Intense Monitoring
every 6 months
- eHealth devices

Tablet



Healthcare 2023, 11, 2656 21 of 46

Table 8. Cont.

Variable Description Data Value
Range

Acquisition
Method

Used
Devices

Domain IV—Emotional status

Facial Expression Analysis
Estimate mood using facial
expression analysis enabled by
MEAA

Enum: mood class and probability Continuous Monitoring
- eHealth device Smartphone

PHQ-9 Monitor the severity of depression and
response to the treatment integer: questionnaire score (0–27)

Continuous Monitoring
- PRO on smartphone

(every month)
Smartphone

Domain V—Quality of life and daily living

MFIS
Assessment of the effects of fatigue
in terms of physical, cognitive
and psycho-social functioning

integer: questionnaire score (0–84)
Continuous Monitoring
- PRO on smartphone

(every month)
Smartphone

Food Habits Questionnaire
(FH-Q)

Self-report questionnaire measuring
food intake habits about typical
eating patterns over the past month

integer: questionnaire score (0–18)
Continuous Monitoring
- PRO on smartphone

(every month)
Smartphone
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2.3.3. Study Design for Stroke Pilot

The stroke pilot study will enlist 15 patients who have suffered a stroke and follow a
rehabilitation program in the Neurology Department of the University Emergency Hospital
Bucharest. The study considers two milestone in-clinic evaluations along the way at the
6- and 12-month time marks, each preceded by a 2-week long intense monitoring period.
In addition, because patients are usually hospitalized for a duration of 7–10 days after a
stroke incident, the stroke study employs a baseline evaluation at month 0, which serves as
reference for the rest of the evaluations during the 1-year pilot study. During their hospi-
talization, the patients are asked to wear the devices intended for the intense monitoring
period every time they perform a standard medical test or a physical rehabilitation exercise.
The set of variables to be monitored and the monitoring means and frequency are presented
in Table 9. It should be noted that, for the stroke case in particular, there is an explicit entry
for detecting whether physical rehabilitation exercises are performed during the intense
monitoring period.

All PROs in the stroke study can be completed in one or more sessions within a
week. As in the case of the MS and PD pilots, standard PROs are completed by a set of
additional relevant questions, whereby for the stroke case, the focus is on the perception of
the emotional status and the degree of socializing. The questions and their scheduling are
reported in Table A3 in Appendix A.

During the intense monitoring period, patients are admitted to the neurology de-
partment of University Hospital Bucharest in order to reduce the burden related to the
installation and use of the devices. Participants wear the smart bracelet for the duration of
the two weeks since it does not require any interaction by the user. Most of the participants
will use the Withings mattress during the intense monitoring period. Patients are shown
how to install and use the mattress and can opt to continue using it at home, after the end
of the intense monitoring period. The smart insoles and the smart belt are used by patients
when they perform their daily rehabilitation exercise. The WellMojo app is used to keep a
diary of the daily activities and rehabilitation exercise sessions.

2.4. Pilot Study Prediction Outcomes and Alert Triggers

The data collection journey described in the previous section for each pilot study
gathers information that is to be used towards achieving the fundamental research goals
of each study. The ALAMEDA pilot studies are observational in nature, meaning that the
objective is to analyze the predictive power of the collected data, in terms of assessing the
patient health status over different, continuous and large time periods. All the while, simple
yet informative rules can be defined to make use of the information that is continuously
collected (PROs and smartwatch data) so as to highlight situations to which clinicians
monitoring the studies should pay closer attention.

From the descriptions in Section 2.3, it is obvious that the analysis algorithms have to
contend with streams of data collected over different time horizons (continuously or only
during the intensive monitoring period), having varying frequency and different types
(numeric, ordinal or categorical). The following subsections detail how each source of data
is analyzed individually or in correlation with the others, as well as the conditions that
trigger alerts.

2.4.1. Analysis of Data from Wearables

Data retrieved from wearable devices describe in raw measurements movement; thus,
each pilot study has defined, specific targets that characterize the movement behavior
throughout the day. Table 5 presents the prediction interests for wearable data for each
study. For PD, the most important predictions are those with respect to dyskinesia or
bradykinesia, as well as the freezing of gait. The MS and PD studies are also interested
in detecting restless leg syndrome manifestations during sleep, while the stroke study
is interested in detecting physical rehabilitation exercise sessions. Annotations for these
events are made by doctors in the clinic visits during the intense monitoring periods.
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Table 9. Stroke pilot data collection journey—list of monitored variables and their method of collection.

Variable Description Data Value
Range

Acquisition
Method

Used
Devices

Domain I—Mobility, general motor or physical function

Step count,
periods of relative
immobility/slowness
of movement

Continuously monitored step count
and other features of
general mobility in daily life

step count: integer (0–15,000)
periods of mobility: seconds
(0–14,400)

Continuous Monitoring
- eHealth device Fitbit Smart Watch

Heart rate, SpO2 levels Monitoring of daily heart rate and
blood oxygen levels

heart rate: integer (30–200)
blood oxygen levels: percentage
(0–100)

Continuous Monitoring
- eHealth device Fitbit Smart Watch

Physical Activity Amount Exact time periods of inactive, light,
medium or vigorous activity seconds (0–14,400)

Intense Monitoring
every 6 months
- eHealth devices

Fitbit Smart Watch
GENEActiv Bracelet

Rehabilitation Exercises
Detect execution of prescribed
upper and lower limb physical
rehabilitation exercises

seconds (0–3600) duration of detected
exercises

Intense Monitoring
every 6 months
- eHealth devices

Fitbit Smart Watch
GENEActiv Bracelet
NTNU Smart Belt
Loadsol Insoles

6 min walk test

Sub-maximal exercise test assessing
walking endurance
and aerobic capacity.
Participants walk around an indoor
perimeter for a total of six minutes.

metrics from first row
avg. cadence per 30 s: integer
loading rate: N/s (speed of normal
force applied to body)
factor of imbalance: percentage
(disproportion of load between feet)
peak force: N (maximum force push
while walking)

Intense Monitoring
every 6 months
- eHealth devices

Fitbit Smart Watch
GENEActiv Bracelet
NTNU Smart Belt
Loadsol Insoles

ACTIVLIM questionnaire
Self-assessed questionnaire to examine
both upper and lower limb muscle
strength using daily living activities

integer, questionnaire score: −11–+11
Continuous Monitoring
- PRO on smartphone

(every month)
Smartphone

Dizziness and Balance
questionnaire

Self-assessed questionnaire
for the balance variable integer, questionnaire score

Continuous Monitoring
- PRO on smartphone

(every month)
Smartphone
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Table 9. Cont.

Variable Description Data Value
Range

Acquisition
Method

Used
Devices

Self-assessed
questionnaire for
muscle tone

Self-assessed questionnaire to quantify
the muscle tone variable integer, questionnaire score

Continuous Monitoring
- PRO on smartphone

(every month)
Smartphone

Domain II—Sleep disorders

Pittsburgh Sleep
Quality Index (PSQI)

Self-administered questionnaire to
assess sleep patterns integer, questionnaire score: 0–21

Continuous Monitoring
- PRO on smartphone

(every month)
Smartphone

General Sleep Patterns
Continuous monitoring of general
sleep stage duration using
the smart watch sensor

total bed time: hours (0–12)
light sleep: hours (0–12)
deep sleep: hours (0–12)
REM sleep: minutes (0–240)
apnea: Boolean (true/false)
snoring: minutes (0–240)

Continuous Monitoring
- eHealth devices Fitbit Smart Watch

Intense Sleep Monitoring
Sleep monitoring during pilot
milestones using eHealth devices
and a polysomnograph

Previous row metrics +
polysomnography analysis

Intense Monitoring
every 6 months
- eHealth devices

ENORA Sleep Mat
Withings Sleep Mat
Fitbit Smart Watch
GENEActiv Bracelet

Domain III—Mental and cognitive ability

Keystroke dynamics Detailed timing of typing
on smartphone

Enum: classes of abnormal
typing patterns

Continuous Monitoring
- eHealth devices Smartphone

Line Tracking Test
Self-administered test on tablet
to assess various aspects
of arm/hand movement

Reaction time: ms
Movement time: msec
Internal time delays: msec

Intense Monitoring
every 6 months
- eHealth devices

Tablet

Virtual Supermarket Test
Self-administered test based
on a 3D serious game
to assess cognitive decline

time to completion: ms
(scores above 215,000 ms
indicate possible
cognitive impairment)

Intense Monitoring
every 6 months
- eHealth devices

Tablet
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Table 9. Cont.

Variable Description Data Value
Range

Acquisition
Method

Used
Devices

Domain IV—Emotional status

Facial Expression Analysis
Estimate Mood using facial
expression analysis enabled by
MEAA (see Section 2.2.2)

Enum: mood class and probability Continuous Monitoring
- eHealth device Smartphone

COAST Self-assessed questionnaire
to assess the speech variable integer: questionnaire score (20–100)

Continuous Monitoring
- PRO on smartphone

(every month)
Smartphone

PHQ-9 monitor the severity of depression and
response to the treatment integer: questionnaire score (0–27)

Continuous Monitoring
- PRO on smartphone

(every month)
Smartphone

Domain V—Quality of life and daily living

MFIS
Assessment of the effects of fatigue
in terms of physical, cognitive
and psycho-social functioning

integer: questionnaire score (0–84)
Continuous Monitoring
- PRO on smartphone

(every month)
Smartphone

Food Habits Questionnaire
(FH-Q)

Self-report questionnaire measuring
food intake habits about typical
eating patterns over the past month

integer: questionnaire score (0–18)
Continuous Monitoring
- PRO on smartphone

(every month)
Smartphone
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In the devices column, the set of input modalities which will facilitate the prediction
is indicated. Notice that for each device, we indicate its mount position on the body. As
described in Section 2.2.1, the GENEActiv smart bracelet and the NTNU Smart Belt allow
for the sensors themselves to be mounted on different part of the body using adjustable
straps. Consequently, throughout the intense monitoring periods, patients are asked to
alter the positioning of the sensors on their body to assess the predictive capability based
on different mount points.

Since the pilot studies are retrospective in nature, the word “real-time” appearing in
the description column of some prediction targets refers to the development of algorithms
which require a small time interval around the start and end timestamps of the events. To
facilitate ground-truth annotation collection, patients are instructed to use the intuitive
annotation functionality provided by the WellMojo application of the ALAMEDA Digital
Companion, which has a predefined list of target events and requires a single button press
to mark the occurrence of an event.

2.4.2. Analysis and Alerts on Combined Wearables Data and PROs

As explained in the introduction, the approach taken in the ALAMEDA Pilot studies is
an AI/ML-first exploratory analysis of the predictive capability of the proposed data collec-
tion journey. We set up the ML objectives as two types of prediction tasks, corresponding to
either a cross-sectional or a longitudinal analysis. These can be seen in the tables included
in Appendix B: Tables A4–A6.

For cross-sectional-like prediction setups, each pilot study proposes a multinomial clas-
sification target based on thresholding the score of a standard test questionnaire in a manner
that is clinically relevant. MDS-UPDRS [45], EDSS [46] and mRS [47] are the most important
health status questionnaires for the PD, MS and stroke studies, respectively. Apart from
these, classification setups can be made for other medically relevant questionnaires (e.g.,
MoCA [48]), covering all five health status categories outlined in Section 2.3.

The other type of prediction setup resembles a longitudinal analysis. For the same tests
as above, a binary classification task is defined, posing a change vs. no change (or change
by X points vs. change by less than X points) in between any two milestone evaluation
moments of the study.

The novelty of our approach stands in the development of ML models that can exploit
several types of input at the same time to perform the classification tasks mentioned above.
Specifically, we employ both the detection results from wearable devices, as well as PRO
and physical activity and sleep summaries obtained from the Fitbit smartwatch as input.
We explore the prediction capability of momentary snapshots (e.g., data collected only
during the intense monitoring period), as well as that of longer-term metrics from PRO and
Fitbit data aggregated over the time period from one milestone evaluation to the other.

Though we mentioned that ALAMEDA pilot studies are observational in nature, it
is the case that changes in some of the monitored variables (from the Fitbit smartwatch,
Withings Sleep Mat, or from received PROs) provide valuable and actionable insights to
medical professionals with respect to the health status of the patient. Consequently, a set
of alert conditions are designed, which highlight abnormal situations and display them
in a dashboard reserved for the monitoring of the pilot study progress. The variables
subject to alert conditions and the criteria for triggering them are listed in Table 10. The
rule trigger conditions are selected as changes with a low probability of observance in the
given monitoring time frame (one year) such that if they are observed, a notification should
be raised.
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Table 10. Conditions for triggering alerts on subset of variables from the data collection journey.

Variable Description Pilot Study Alert Conditions

Domain I—Mobility, general motor or physical function

Step count,
periods of relative
immobility/slowness
of movement

Continuously monitored step count
and other features of
general mobility in daily life

PD, MS, Stroke Reduction of week
average ≥ 20%

Self-assessed
questionnaire for
muscle tone

Self-assessed questionnaire to quantify
the muscle tone variable

Stroke Increase of ≥1 point
compared to previous month

ACTIVLIM questionnaire
Self-assessed questionnaire to examine
both upper and lower limb muscle
strength using daily living activities

Stroke
When answer to a question changes from
“easy” to “difficult” or “impossible”,
compared to previous month

Dizziness and Balance
questionnaire

Self-assessed questionnaire
for the balance variable

Stroke
When a patient checks a symptom
that was not checked in the
previous month

Domain II—Sleep disorders

Pittsburgh Sleep
Quality Index (PSQI)

Self-administered questionnaire to
assess sleep patterns

PD, MS, Stroke
Change in answer to item 5,
marking an increase in occurrence
frequency compared to previous month

Domain III—Mental and cognitive ability

Virtual Supermarket Test
Self-administered test based
on a 3D serious game
to assess cognitive decline

PD Deterioration of performance by ≥20%
compared to test 3 months ago

Domain IV—Emotional status

PHQ-9 Monitor the severity of depression and
response to the treatment

MS, Stroke Score increase of ≥1 point
compared to previous month

Domain V—Quality of life and daily living

MFIS
Assessment of the effects of fatigue
in terms of physical, cognitive
and psychosocial functioning

PD, MS, Stroke
Score increase of ≥16 points
or ≥19% compared
to previous month

3. Discussion

To put the ALAMEDA pilot studies into greater perspective, in what follows, we
review the related work, discuss the analysis of the influence of non-disease related factors
on the evolution of PMSS patients, and present the expected challenges within the data
collection journeys and the means to mitigate them, as well as going over measures that
ensure data privacy once the collected information is shared with third-party entities.

3.1. Related Studies

The use of wearable sensors and digital methods to collect data about the patient status
or progress of the recovery treatment is an ongoing area of research and a field exhibiting
high innovation for related applications, with many examples to date (as shown in what
follows). However, there is a large variance in the duration, scope and method of the
monitoring. Most of the studies involving the use of wearable sensors occur in laboratory
environments and are of a limited duration (up to 2 weeks), while most of the long-term
studies (e.g., extending to more than 6 months) collecting patient-reported data do not
include objective data measured by specialized devices at the same time.

The ALAMEDA pilots are deployed in a one-year study, where digitally completed
PROs are accompanied by objective measurements from an unobtrusive device (a smart
watch), while more intense monitoring is scheduled at specific milestones of the studies (3-,
6-, 9- or 12-month marks), wherein a novel combination of wearables (the accelerometer
bracelet, the IMU sensor belt and the ground force measuring insoles) is employed in
free-living conditions to measure the motor-related health status of the patients.

For Parkinson’s disease, there are many studies that use wearable devices similar in
capabilities and body part-mounting position to the ALAMEDA PD study to quantify the
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level of tremor, freezing of gait or dyskinesias experienced by a patient. A wrist-worn
accelerometer can be employed to develop a tremor stability index, which can, in turn, help
distinguish between PD tremors and essential tremors with a good level of accuracy [49].
Parkinson’s tremor severity can also be quantified using wrist-worn devices, such as
smartwatches [16,17], while accelerometers mounted below the ankle, on the sides of a
shoe, can assess gait and analyze the turning capabilities for PD patients [50]. While the
cited works employ a larger number of patients than the ALAMEDA PD study, they are all
performed under laboratory conditions and for a limited duration in time.

Mobile health applications for PD that use a smartphone or a tablet enable the col-
lection of patient-reported outcomes (motor fluctuations) and relevant biomarkers that
can indicate disease severity [51]. The PD_Manager system [10], the mPower study [11]
and the work by Zhan et al. [51] use smartphone applications to actively evaluate both
motor and non-motor (such as anxiety/depression, dementia, orthostatic hypotension,
and RBD) symptoms associated with Parkinson’s as measured by the scales of the MDS-
UPDRS test. However, the ALAMEDA project is innovative since it provides the real
everyday monitoring of the emotional status, exercise/dietary habits, social interaction
and well-being of PD patients, providing a holistic approach. In the ALAMEDA PD study,
two specialized tablet applications (the line-following and virtual supermarket tests) are
employed every 3 months to comprehensively assess the cognition, including learning and
memory, executive function and language capabilities of PD patients.

In the stroke rehabilitation case, there is significant interest in quantifying gait and
upper limb movement parameters that can be indicative of improvements or regressions
in patient motor deficits. A recent work reviewing the utilization of wearable technology
to assess gait and mobility post-stroke [52] identified accelerometers, IMU-based activity
monitors and pressure sensors as the most commonly used wearables to extract gait and
mobility measures. The most often assessed metrics include gait speed and cadence for gait,
and step count and duration of activity for mobility. However, as in the PD case, there are
few research studies (e.g., [53]) that consider an analysis of outpatient or at-home registered
ambulation data. Boukhennoufa et al. [54] observe only one study [15] out of 33 reviewed
works, which computes its estimates under free living conditions (patients of a specialized
rehabilitation care facility for which activities are recorded that are either part of therapy
sessions or of normal living) and which averages about 9 days of recorded motion data
per patient.

It is further the case that relatively few works (e.g., [55,56]) examine the validation
and predictive power of accelerometer and IMU based sensors in use specifically for
stroke patients (or patients with an impaired walking pattern in general). Peters et al. [52]
note that gait abnormalities, such as inconsistent or slow stepping and walking speed
and decreases in single limb stance, can limit the accuracy of some sensors (e.g., IMUs,
specifically if worn at the hip or on the shin and ankle of the paretic leg). In contrast to
this, the ALAMEDA stroke study employs easy-to-wear insoles, capturing the ground
normal force component, in addition to IMU sensors worn on a belt and the wrist-worn
accelerometer. Gait parameters extracted from the insoles (see Section 2.2.1) can improve
actual step counts and stride times, as well as indicating imbalances between the left and
right foot steps and thus better inform algorithms that seek to classify gait and balance
issues. It is also the case that the novel combination of sensors used in ALAMEDA has
the potential to validate the capability of accelerometer and IMU-based belts to accurately
measure gait parameters in patients presenting with abnormalities by comparing to the
higher-confidence measurements made by the insoles.

A long-term study comparable in objectives to the ALAMEDA stroke pilot is MO-
BITEC [12], which investigates aspects of quantitative gait analysis and balance assessment,
lower-limb muscle power, general physical ability or life–space analysis (list and frequency
of the most often visited locations apart from the home environment) of post-stroke pa-
tients at 3, 6, 9 and 12 months after the initial enrollment. However, data collection is
limited to the clinical visits at the mentioned milestones, using standard medical tests and
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devices that can be used only in a lab setting (e.g., a force platform for balance testing).
In contrast, the ALAMEDA stroke study aims to collect PRO data from patients, apart
from objective information from wearables by means of a light schedule of questionnaires
delivered through a chatbot interface.

In the multiple sclerosis case, a research program investigating the potential of
wearable devices to help measure and predict clinical outcomes in neurological diseases
(RADAR-CNS (https://www.radar-cns.org/, accessed on 11 August 2023)) highlighted
the barriers and facilitators for mHealth technology that have been explored for MS [57].
Findings show that patients with a relapsing–remitting course of MS emphasize the impor-
tance of smartphone apps and wearable devices to collect symptoms patterns in between
appointments in order to identify the occurrence of relapses. Moreover, multiple domains
have emerged as potential targets to monitor through mHealth in MS (e.g., physical activity,
diet, and physiological parameters). The ALAMEDA MS study envisions both aspects in
its mission itself, as the main research question is related to the prediction of MS relapses
through the collection of multiple-domain mHealth parameters.

Waist- and head-mounted IMU sensors can be used to determine unstable walking
patterns and fatigue in MS patients [14]. Measures of variability and asymmetry in stride,
step and pelvic sway are strongly correlated to pelvic compensations in walking, which in
turn have a moderate correlation with MS severity as measured by the EDSS scale. The
ALAMEDA MS study aims to quantify similar influences using a set of less-obstructive
sensors, such as the belt-mounted IMUs and the insoles. The variability and asymmetry of
gait measures can also be used to classify between moderate (EDSS score between 3 and 5)
and advanced MS (EDSS score > 5), with the observation that the data were collected in a
lab setting based on the 6 min walk test [58].

Recent efforts to collect long-term and diverse markers of MS severity (other than
mobility-related ones) have highlighted the need to use PROs to obtain information that
is important to patients who want to be better aware of their condition [13]. An example
study resembling the ALAMEDA data collection protocol (though for a length of only one
month) collects both PRO information and data from a Samsung Gear S2 smart watch [59].
Study findings show that objective metrics (e.g., max steps per day) can be moderately to
strongly correlated to PROs, looking at experienced fatigue severity, the 2 min walk test, or
patient-determined disease steps.

The ALAMEDA MS study clearly follows this line of reasoning by enabling the
collection of PROs through a light schedule of standard medical questionnaires, as well as a
set of relevant questions (see Table A2 in Appendix A) delivered through a chatbot interface.

From the perspective of the data collection journey itself, specifically in longer-term
studies, researchers also looked at reasons causing patients to have low or non-existent
engagement with digital PRO submission applications [60]. Health problems, technical
barriers, feeling too busy or simply not wanting to submit data because of the lack of
personal benefit are cited as the most frequently invoked reasons for dropping out of
studies requiring PRO submission. Authors of [60] also note a strong correlation between
the frequency of requested PRO submission and the dropout rate, specifically for longer
studies, whereby a 90-day study with daily PRO collection has a three-times-higher dropout
rate than a 12 month study performing only quarterly PRO collection.

The ALAMEDA studies data collection journey is well positioned to address these con-
cerns. The inclusion and exclusion criteria of patient selection ensure that the health status
itself cannot be a cause for missing PROs. The data collection journey of each pilot study
provisions for an intense monitoring limited of 2 weeks in duration, implemented only at
the 6- and 12-month marks for MS and stroke, and quarterly marks for PD. During the rest
of the time, ALAMEDA pilots maintain a light schedule of PRO submission, enabling the
postponing of responses and completion of questionnaires over several interaction sessions.
Furthermore, the MS and stroke pilots make use of a chatbot interface to deliver most of
the questionnaires and relevant questions, and studies indicate that patients could prefer
the delivery of more complex or longer questionnaires through a chatbot interface [61]. It

https://www.radar-cns.org/
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is also worth noting that the relevant questions were co-developed by clinicians and the
main end users of the system, namely the patients and their caregivers. This process fol-
lows the guidelines developed within the MULTI-ACT project (https://www.multiact.eu/,
accessed on 11 August 2023), which implemented a new model, allowing for the effective
cooperation of all relevant stakeholders of health research.

These latter aspects position the ALAMEDA pilot study better from the perspective of
not overburdening the daily life schedule of the patients. To reduce technical barriers and
the burden of remembering how and when to wear the wearable devices and what needs
to be reported, ALAMEDA implements a set of notification mechanisms, video tutorials
explaining device usage (see Section 2.2.2) and checklist-style reminders to offer patients all
the information required for sending relevant data either through PROs or the devices they
use. Solutions similar to the above-mentioned ones, which increase compliance, improve
usability and enable a higher quality of collected data, have also been highlighted as
necessary features in a study looking at the usability of the mPower application for PD [62].

3.2. Use of Auxiliary Datasets

As described previously, the ALAMEDA pilot studies are in alignment with the
objectives, practices and means for data collection used in the related literature. However,
the ALAMEDA data collection journey also has a set of distinguishing characteristics.
The pilot studies employ a novel combination of minimally intrusive wearable sensors,
whose combined capabilities open up the prospect of a more informed analysis for the
objectives set out in Section 2.4.1. Wrist-worn accelerometers cover the detection of physical
rehabilitation exercises and intentional upper arm usage in stroke patients. Combined
insole and belt-mounted IMUs cover gait and balance defect analysis. Furthermore, because
for many of the wearable-based detection predictions there is a redundancy of information
sources (e.g., gait parameters such as step count, cadence, stride asymmetry, measurable
using insoles, wrist accelerometers and waist-mounted IMUs), the opportunity arises to
validate the capability of one sensor in comparison to another, under free living conditions.

Furthermore, to overcome the challenge of a reduced number of enrolled patients per
pilot, we make use of data collected in datasets where the used features have a substantial
overlap with information collected in the ALAMEDA pilots. Table 11 lists a selection
of prediction targets (that are also part of the ALAMEDA pilots—see Tables A4–A6 in
Appendix B), and the datasets they are extracted from, as well as the features and the
machine learning models that will be employed for pre-training on the auxiliary dataset
and transferring to data collected in the ALAMEDA pilots.

For PD, MDS-UPDRS Sections I and II, as well as PDQ-8 scores can be predicted
based on two different setups. Using the mPower dataset, a longitudinal task is defined
that uses demographics data, IMU data from walking tasks and PDQ-8 and MDS-UPDRS
scores from previous evaluations. A modified version of a time series classification model
(InceptionTime [63]) is used for the prediction. The alternative setup involves use of the
FoxInsights dataset in a cross-sectional analysis, where the answers to survey questions con-
cerning symptoms and daily activities (which are also partially covered in the ALAMEDA
questions for PD) are used as features to a gradient-boosted tree regressor (CatBoost) model.
Data from the Novel Loadsol insoles provide the same type of input (ground reaction force
measurements) as those used in the gait in PD dataset, which is used to predict a Hoehn
and Yahr score using an XGBoost regressor model.

https://www.multiact.eu/


Healthcare 2023, 11, 2656 31 of 46

Table 11. Prediction targets and the use of auxiliary datasets to pre-train ML models.

Disease Type of
Prediction Support Dataset Used Features ML Model

PD MDS-UPDRS I/II
score prediction mPower [11] Demographics, Walking Task,

PDQ-8 and MDS-UPDRS Surveys
InceptionTime [63] time series
convolution model

PD PDQ-8 score prediction mPower

PD MDS-UPDRS II
score prediction FoxInsights [64] Answers to survey questions

CatBoost Regressor
(https://catboost.ai/en/docs/,
accessed on 11 August 2023)

PD PDQ-8
score prediction

PD Hoehn and Yahr score Gait In Parkinson’s Disease [65] Vertical Ground Reaction Force XGBoost

MS EDSS progression MSOAC Placebo Dataset [66] T25-FW, NHPT, EDSS from
previous evaluations CatBoost Regressor

MS
EDSS progression
classification (stable vs.
progressive)

PROMOPROMS Dataset [13]

demographics, Functional Test Questions
(ABILHAND, Edinborough Inventory,
Functional Independence Measure),
Emotational Status Questions
(Hospital Anxiety and Depression Scale),
QoL questions (Life Satisfaction Index),
MFIS

CatBoost Classifier

Stroke MoCA score classification Longitudinal Early Stroke Cohort [67] Demographics and wrist-worn
accelerometer data from daily life DNN with fully connected layers

Stroke mRS score classification Wearable-Based Walk Ratio Assessment in
Healthy Adults and Chronic Stroke [68]

Demographics, MoCA and mRS
at previous evaluations DNN with fully connected layers

For MS, the prediction of EDSS progression is also tackled from two perspectives.
Using the MSOAC Placebo Dataset for pre-training, a CatBoost regressor predicts the score
value at a future date using input from T25-FW, NHPT and previous EDSS evaluations
as input (all of which are also collected in the ALAMEDA MS pilot). A simplified version
of the problem entails a binary classification of the future EDSS score as stable or progres-
sive by the use of the PROMOPROMS dataset. Many of the functional test questions in
PROMPROMS have an equivalent in the relevant questions set for the MS pilot (see Table A2
in the Appendix A).

In the stroke study, the longitudinal early stroke cohort [67] is used as an auxiliary
to pre-train MoCA score classification as normal (score ≥ 26), abnormal (20 ≤ score < 26)
and dementia (score < 20). A fully connected layer network uses demographics input and
window-based summaries of wrist-worn acceleremoter data to make the classification in a
cross-sectional setup. Additionally, a longitudinal prediction setup is employed to perform
an mRS score classification using demographics data and previous MoCA and mRS score
evaluations on the Wearable-Based Walk Ratio Assessment in Healthy Adults and Chronic
Stroke dataset [68].

3.3. Sleep Analysis

The ALAMEDA studies also place an emphasis on sleep monitoring for PMSS patients
(and, in particular, for PD, where it is of major concern) to a higher degree than similar
studies, whereby sleep-related data are collected using capable sensors (see sleep mattress
described in Section 2.2.1) continuously during the project. To support and justify the sleep
monitoring along the ALAMEDA, it is widely acknowledged that in the domain of neurode-
generative diseases, sleep disturbances are common, resulting mainly in fatigue, irritability,
headaches, impaired motor and cognitive skills, depression, and daytime somnolence [69].
Sleep patterns are strongly interlinked with brain functionality and structure, intrinsically
related to well-being and mental and physical health as highlighted in [70]. An apparent
vicious circle of interchanging roles of poor sleep to increased risk of poor health takes
place, limiting and simultaneously projecting sleep and health quality. It is well established
that sleep disturbances/disorders are often among the first signs of distress [71], where
common mental health problems, such us anxiety and depression [72], can often underpin
sleep problems [73]. Nowadays, disorders of sleep are taken under serious consideration
as part of neurodegenerative diseases, but for many years, they were not considered a
relevant part [74]; specifically, sleep abnormalities are clearly recognized as a distinct clin-

https://catboost.ai/en/docs/
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ical symptom of concern in neurodegenerative disorders [75]. More specifically, for the
cases considered in ALAMEDA, in the PD case, sleep disorders are commonly encountered
not only as consequences of the damage to the central nervous system but also from the
applied treatment. The majority of PD patients suffer from excessive daytime sleepiness,
and/or fragmented sleep [74,76,77]. As a result, up to 80% of PD patients report poor sleep,
which has been characterized by shorter sleep periods and sleep efficiency [78]. In MS,
patients report worsening of symptoms, such as daytime drowsiness, increased fatigue,
decreased concentration and memory, and worsening depression due to lack of restful
sleep [79,80]. Poor sleep is common in people with multiple sclerosis, with about 50% of
people with MS reported to experience some form of sleep disturbance. In the case of stroke
survivors, post-stroke sleep disorder (PSSD) [81,82] has a negative effect on the outcome
and recovery from stroke, as poor sleep quality is associated with daytime sleepiness,
reduced cognitive function, functional status, and even mortality [83,84]. PSSD is one of the
frequently reported symptoms after a stroke, occurring in 21–77% of stroke patients [85].

As an auxiliary task for sleep analysis in ALAMEDA, sleep stage prediction is em-
ployed on data that have complete overlap with those collected using the Fitbit Smartwatch
and the Withings sleeping mattress. Based on features such as activity level, heart rate,
heart rate variance and SpO2 levels (on hand of the MESA dataset [86]), a recurrent network
architecture is employed to classify the sleep stage of a 5 min window as REM, non-REM
or awake.

An additional output of sleep analysis in ALAMEDA is based on unsupervised learn-
ing methods on data from the prototype ENORA mattress toppers. Using principal com-
ponent analysis (PCA), a codebook of sleeping stances is created, which can be used to
describe the mobility patterns of a person in their sleep. These mobility patterns can then
be used as input to predictions for sleep quality metrics.

3.4. Non-Disease Related Data Analysis

A relevant element of novelty in the ALAMEDA pilot use cases is the study of the
influence of non-disease-related factors (psychological, financial, societal or quality-of-life
related) on the evolution of the patients’ health status. The underlying assumptions are
that situations, such as financial difficulties, low education, unemployment due to the
specific illness, absence of marital status or older age, are associated with a limited self-care
capacity, increased mobility difficulties, a higher rate of depression and a considerable
negative effect on the patients’ quality of life.

The ALAMEDA pilot studies aim to quantify the strength of these correlations and
analyze the degree to which financial hardship and lack of social support are associ-
ated with worse QoL, independent of depression or anxiety levels. To do this, a 51-
item socio-economic factors questionnaire is designed to collect information on demo-
graphic/residence data, socio-economic status, medical history and use of medication, as
well as the use of health services. The questionnaires are administered to each enrolled pa-
tient by a medical professional, at the beginning of the study and at its milestone follow-up
visits (i.e., at 6- and 12-month marks). At the end of the pilot studies, a correlation analysis
is performed between the questionnaire responses and the results of the standard medical
tests that capture general mobility and cognitive health dimensions (e.g., PDQ-39, Beck’s
Anxiety and Depression Inventory, MOCA, MDS-UPDRS I—cognitive; EDSS, MDS-UPDRS
III/IV, Romberg test and Berg balance scale—mobility).

An additional investigation looks at other non-disease-related factors which shape
the quality of life of a patient and which may influence their ability to manage the disease.
Specifically, ALAMEDA pilot studies will implement an automated system to collect
statistical data on environmental factors (temperature, humidity, air pollution—particulate
matter levels) from the local region of the patient residence. A questionnaire will be
designed to gather information on patient habits (e.g., diet, smoking, active life—practicing
a sport or a hobby), as well as their perceived levels of family support/inclusion. This
questionnaire is to be administered by medical professionals at the half-way (6 month)
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and end marks of the studies. The overall aim is to analyze the predictive power of the
environmental, habit and social relations data in predicting the patient health status, by
including these variables in the input of algorithms that handle information presented
in Section 2.4.2.

3.5. Pilot Study Challenges

In the design of the data collection journey for each pilot study considered in ALAMEDA,
a set of challenges and mitigation actions are taken under account. The most important
challenges in collecting a relevant set of data relate to the ability of patients to correctly
use and interact with the wearable devices given to them, as well as complying with the
schedule of PRO submissions enabled by the ALAMEDA Digital Companion.

In Table 12, we show that for each challenge, we provisioned for a technical mitigation
solution as well as a process level one, which guides the experience of the patient using the
devices and software applications.

Table 12. ALAMEDA data collection journey challenges and mitigation actions.

Challenge Technical
Mitigation

Process Level
Mitigation

Patients find it challenging
to fill in PROs

The ALAMEDA Digital Companion issues notifications
and instructions on how to fill in each questionnaire

Medical professionals perform a dry-run of
receiving a notification and completing a PRO
while the patient is hospitalized/on the first
days after enrollment

Patients find it challenging to follow
the schedule for PRO submission

Notifications in the ALAMEDA Digital Companion
can be postponed;
Questionnaires can be split into multiple
completion sessions

A light PRO schedule is provisioned:
no more than 1 questionnaire a week or
1–2 relevant questions a day

Patients find it challenging to wear and operate
many devices (e.g., smart insoles, smart belt)
during the intensive monitoring period

An early morning checklist (comprising video tutorials
of how to wear and use the devices) is delivered
through the ALAMEDA Digital Companion every day
of the intense monitoring period

Collect usability feedback at each pilot
milestone and iterate over support documentation;
Enable option for admission into clinic during the
intense monitoring period (e.g., for stroke patients)

Patients find it challenging to understand
their role and contribution in the study
leading to reduced engagement and
possible dropout

Patients can see their own data in the ALAMEDA
Digital Companion;
Social Media groups can be created to facilitate
inter-patient support

Medical professionals keep a close contact
with the patient;
Medical professionals explain the pioneering
role that patients play in the study:
for themselves, as well as for future patients

The ALAMEDA study provisions for a usability and patient experience questionnaire
whose questions follow the model of the unified theory of acceptance and use of technology
(UTAUT) [87]. This questionnaire is administered at the mid and end-of-study milestones,
asking in particular about the experience of interacting with the smartwatch and the
ALAMEDA smartphone applications that are used in the continuous monitoring stream.
Furthermore, clinicians receive weekly updates concerning the percentage of completed
questionnaires that are due according to the schedule described in Tables 7–9.

At the time of writing, 14 PD patients, 6 MS patients and 6 stroke patients reached the
first milestone for usability evaluation. Preliminary results showed that, for MS patients,
the average monthly completion rate of PROs is close to 60% (with a minimum at 24%
and a maximum of 92.5%). The enrolled stroke pilot patients are old and unfamiliar with
the frequent use of technology, such that only two out of six patients are actively filling in
PROs while not hospitalized or at a milestone evaluation. The stroke study team therefore
intends to collect more frequent PRO responses during the intense monitoring periods,
which happen under the supervision of medical personnel. PD patients are consistent
in their monthly responses to PRO requests and show good adherence to the proposed
collection protocol, completing a total number of more than 800 questionnaire instances.

In the initial responses to usability questionnaires, PD patients found the smart watch
and the smartphone application unobtrusive and easy to use (with an average of 3.1
on a 0–4 Likert scale). However, patients signaled some difficulty in responding in the
appropriate time to the daily questionnaires and considered the number of questions jarring.
Meanwhile, MS patients considered the smartwatch useful in everyday life (average score
of 4 on a 1–5 Likert scale) and easy to interact with. Patients expressed confidence in using
the WellMojo questionnaire application (3.8 average on a 1–5 Likert scale) and found the
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interaction with the Conversational Agent to be sufficiently simple (an average of 2.7 on a
1–5 Likert scale asking for difficulty of interaction).

An important highlight to drive change in the ALAMEDA application functionality
(especially for PD) is the desire of patients to make the feedback on their health status (as
derived from the PRO and objective data they submit) more regular and easier to follow
(expressed as a value of 2.7 on the 0–4 Likert scale). This is an avenue that we want to
pursue with priority.

3.6. Privacy

The ALAMEDA pilot studies are observational in nature and rely on retrospective
analysis to determine the predictive power of the collected data. As such, the collected
datasets will only be made available to third-party entities at the end of the project. To
ensure the privacy of users and their data, a detailed set of measures has been put into place.

All wearable devices are either CE marked or operate in a way that stores data
locally on the device before it is retrieved and stored in a secure way in the ALAMEDA
Research Data Management Platform. There is a detailed step-wise procedure for creating
patient accounts, with use of the ALAMEDA Digital Companion that ensures that data
are subsequently anonymized. All PRO data coming in from the component applications
of the ALAMEDA Digital Companion are stored on servers owned by members of the
ALAMEDA consortium, for which a secure data management plan is in place.

Upon entering the project exploitation phase, the exact method of obtaining access to
the collected data will be made available. Each pilot study received the Ethics Committee
approval of each organization, and each study participant signed their informed consent
upon enrollment.

3.7. Impact of Digital Transformation on Patient Health Monitoring

Considering the negative burden of the pathologies included in ALAMEDA, digital
devices can help with correct monitoring of the patient over time, predicting worsening,
avoiding relapses and anticipating the effect of treatments. Importantly, the value-based
healthcare model was adopted to better treat patients affected by neuro-degenerative
disorders and to reduce costs. In fact, the goal of the model is to enable the healthcare
system to create more value for patients and to increase their quality of life.

To try to address this need, a new vision must be adopted, and the value of the
scientific outcomes must be assessed by different dimensions. This was reached by the
EU-funded MULTI-ACT project that carried out the Collective Research Impact Framework
(CRIF) [88]. The result was the development of five dimensions useful for evaluating
several pathologies, including PD, MS and stroke. Therefore, the MULTI-ACT methodology
represents a general framework to be used in the ALAMEDA project to assess the impact of
research and innovation in three different pilots, where the innovation part is represented
by the digital devices, and the aim is to assess their impact on patients with PD, MS and
stroke. In the presented pilot study setups, we exploited two of these five dimensions
(efficiency and social dimension) to set up KPIs specific to the three diseases considered
and the three pilots (Greece, Italy and Romania), where the studies are conducted by using
digital devices. More specifically, several KPIs for the efficiency part were set up in order to
monitor the patients with devices over time and to evaluate the related costs (e.g., days of
nurse per patient, and days of work loss). Other KPIs for the social part were developed
in order to provide evidence about the impact of tools used in ALAMEDA on the lives
of patients and their families (e.g., days of work lost by caregivers). Thus, remote patient
monitoring clearly emerges as a favorable strategy, which is strongly underlined by the
European Innovation Council as one of the breakthrough health innovation strands to
improve healthcare technologies and the quality of life of patients.
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3.8. Study Limitations

The main limitation of the ALAMEDA study is the low number of participants per
pilot study, which prevents performing the ML-based prediction solely based on data
collected in ALAMEDA, requiring instead to make use of model adaptation or pretraining
as explained in Section 3.2. However, as the main objective of the study is to validate the
prediction potential for the novel data stream combinations introduced in ALAMEDA,
future studies can expand on the number of participants and focus on the prediction setups,
which we identify as having the largest explanatory capability.

In the PD pilot study, we acknowledge that the use of different wearable devices may
impact the variability of the data, and the limited number of converters may affect the
generalizability of the results. The PD study starts as a single-point observational study
and allows patients willing to participate in longitudinal observations at six, nine, and
twelve months from the initial observation. Although data from the wearable sensors are
recorded for these additional visits, the meaningful longitudinal analysis could potentially
not be conducted because the participants can have several changes in medications and
dosage over the course of the study, and the number of PD patients is too small to attempt
the analyses of smaller groups in which these parameters are constant over the longitudinal
duration. Larger and longer-duration studies are required to replicate these findings and to
evaluate how they change over time.

In the MS pilot study, a limitation is related to the long period of monitoring the
participants. Over 12 months, several daily life and disease-related drawbacks may occur,
limiting adherence or leading to drop out. However, some clinical questions, such as those
addressed by ALAMEDA, are often better addressed using real-world data integrating
disease history, performance tests, patient-reported outcome measures and data from
wearable devices [89]. Here, we adopted different mitigation procedures to minimize
missing data and drop-out rates (e.g., engagement of patients in peer-support groups
following MULTI-ACT guidelines), but data standardization and validation within datasets,
harmonization across datasets, and the application of appropriate analysis methods are
important considerations to take into account for present and future studies [89].

From the perspective of the stroke pilot study, the short period of follow-up regarding
the cognitive impairment constitutes a limitation of the study. A further concern is repre-
sented by the impossibility of including stroke patients with severe neurological deficits, as
they are unable to use the ALAMEDA system.

4. Conclusions

This paper introduces the protocol of data collection and analysis of predictive capa-
bility for the PD, MS and stroke studies taking place within the ALAMEDA Project. The set
of wearable devices and software applications which enable the retrieval of objective and
patient-reported information were outlined together with a clear schedule for the collection
of the data. Patients enrolled in the pilot studies undergo 1–2-week-long intense monitoring
(using all devices) at milestone periods, while also submitting PROs for the entire 1-year
duration of the studies.

Clear prediction targets are identified for data from wearable devices (specifically with
respect to movement and sleep), while novel, ML-based prediction setups are proposed for
exploration, taking advantage of the input from both wearable data summaries, as well
as patient reported outcomes. The prediction setups include both longitudinal as well as
cross-sectional analyses.

There are three main innovation contributions brought by the ALAMEDA studies.
First, a novel combination of wearable devices (wrist-worn accelerometer, IMU-based
belt sensors and smart insoles, and under-mattress sleep sensor) will be used to analyze
mobility metrics, as well as motor and sleep disorders according to the needs of each pilot
study. The wear locations are typical (wrist, waist and hips, and in the shoes) for the
bracelet, belt and insoles, while the sleep sensor needs only to be placed underneath the
usual sleeping mattress. These locations align with indications from the literature and
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contribute a minimal overhead for the patients. While the size of the ALAMEDA patient
cohorts is relatively small compared to related studies, we compensate for this through the
exploitation of the repeated intense monitoring periods, which are set 3 months apart and
which enable the focus on analyzing the change in metrics and predictions over time. For
certain analysis tasks (e.g., gait and sleep metric extraction), the selected sensors provide
redundant detection capabilities such that the studies enable a comparative performance
analysis of sensing modalities.

Second, the ALAMEDA pilot studies will collect PRO data for the duration of a year
using smartphone applications that exploit a traditional questionnaire interface, as well
as a modern Conversational Agent interface. The flexibility in interfaces is intended to
prolong patient engagement for the duration of the studies. Apart from motor difficulties,
the PROs capture information about the cognitive-, emotional- and quality-of-life-related
aspects of the patient status. The proposed analysis for PRO data exploits the duration
of the collection period by looking at changes in the correlation to standard medical tests
performed at the milestone clinic visits.

Third, the ALAMEDA studies will supplement collected health status information
with non-disease-related factor analysis, aiming to analyze the predictive power of quality-
of-life, economic status- and environment-related data to explain observed changes in the
patient health status.

Altogether, the ALAMEDA studies will lead to a better understanding of the dynamics
and predictability of changes in the health condition of a PMSS patient, as measured by
the current standard medical tests in the analysis of PD, MS and stroke. Multiple objective
and patient-reported sources will be used to quantify the changes, and the studies will
reveal the predictive power of each source in particular, as well as their novel combination,
thereby informing future efforts to improve long-term treatment options for PMSS patients.
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Appendix A. Set of Relevant Questions for Each of the ALAMEDA Pilot Studies

This section provides details on the set of relevant questions and their scheduling (fre-
quency of expected answers), which constitute complementary patient reported outcomes
(PROs), apart from the answers to standard questionnaires.

Table A1. List of relevant questions by health domain for the PD study.

Question Intent Possible Answers Scheduling

Domain I—Mobility, general motor or physical function

During the day today, regarding “off”
periods, you have had:

Intensity and impact of
experience of off periods

0, 1, 2, 3, or 4
0: None
1: very minor
2: Mild
3: Modest
4: Severe

Continuous Monitoring:
End of each day

During the day today, regarding dyskinesias,
you have had:

Intensity and impact of
experience of dyskinesias

0, 1, 2, 3, or 4
0: None
1: very minor
2: Mild
3: Modest
4: Severe

Continuous Monitoring:
End of each day

During the day today, regarding “off”
periods, you have had:

Intensity and impact of
experience of off periods

0, 1, 2, 3, or 4
0: None
1: very minor
2: Mild
3: Modest
4: Severe

Continuous Monitoring:
End of each day

During the day today, regarding dyskinesias,
you have had:

Intensity and impact of
experience of dyskinesias

0, 1, 2, 3, or 4
0: None
1: very minor
2: Mild
3: Modest
4: Severe

Continuous Monitoring:
End of each day

PD calendar: What description (A, B, C,
or D) best describes your condition over
the last half hour?

Length of periods of
motor complications

A (bad motor condition),
B (mediocre motor condition),
C (good motor condition),
D (bothersome dyskinesias)

Intense Monitoring
(1 week):
Every 30 min, during
waking hours

Domain IV—Emotional status

Which face/answer best
describes your emotional
state today?

Gestalt feeling of the day
Happy, Sad, Normal,
Content, Disappointed,
Frustrated

Continuous Monitoring:
End of each day

How would you rate these
statements over the past week?
- I feel irritable
- I feel lonely or isolated
- I feel calm
- I feel that I am full of energy
- I feel safe and protected
- I am under pressure from

other people
- I enjoy myself
- I feel terrified or afraid
- I feel discouraged about

the future
- I feel worried about my

physical condition

Rating of feelings about things
over a period of one week Scale of 0–4 Continuous Monitoring:

End of the week

Domain V—Quality of life and daily living

How would you rate these
statements over the past week?
- I spent pleasant time with friends.
- I shared my status with friends

through messages, social media
or phone calls.

- I spoke with persons in the
neighborhood and got information
on what is going on.

- I spent pleasant and relaxing time
with family through meals,
chatting,etc.

- I went to the gym or had a dedicated
time for exercise at home or outdoors

- I read for pleasure or knowledge
- I performed enjoyable outdoor activities
- I went out for shopping or other chores
- I performed chores at home

Pattern of social interactions
linked to Quality-of-Life Scale of 0–4 Continuous Monitoring:

End of the week
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Table A2. List of relevant questions by health domain for the MS study.

No. Question Intent Possible Answers Scheduling

Domain I—Mobility, general motor or physical function

1
In the last few days,
have you noticed
a sudden lack of strength
in one or more limbs?

Intensity of upper and lower
limb mobility issues Yes/No Continuous Monitoring:

Once a week

1a
In which situation (e.g., carrying shopping,
bags,or folders, picking up children
or walking)?

If 1 = Yes Free text

1b Did these disorders occur in limbs
that did not previously have deficits? Yes/No

1c How long did they last?

- A few hours or less
- About a day
- Two to four days
- Most of the week

2
Have you felt more rigid or
less fluid in your movements
in the last few days?

Intensity of rigid movement
events Yes/No

2a In which situation (e.g., carrying shopping bags,
picking up children, walking)? If 2 = Yes Free text

2b Did these disorders occur in limbs
that did not previously have deficits? Yes/No

2c How long did they last?

- A few hours or less
- About a day
- Two to four days
- Most of the week

3 In the last few days, how
have you felt when you move?

Frequency of near-fall events
and balance issues

- Sure step
- I have to pay more attention

or stop to do other things-Unstable
- Real risk of falling

4 How many times have you
stumbled over the last few days? Numeric entry

5 How many times have you fallen in the last
few days? Numeric entry

6
In the last few days, have you noticed
an alteration in sensitivity (e.g., arms or legs asleep,
tingling, burning, unusual sensation to the touch)?

Intensity and frequency of upper or
lower limb incidents Yes/No

Domain II—Sleep

1 Do you usually have trouble
falling asleep (more than 30 min)? Determine sleep quality Yes/No Continuous Monitoring:

Once a month

2 Would you define your sleep “restful”? Yes/No Continuous Monitoring:
Once a month

3

Have you ever been told, or
suspected yourself,that you
seem to “act out your dreams”
while asleep (e.g., punching, arm flailing,
making running movements, etc.)?

Yes/No Continuous Monitoring:
Once every 3 months

Domain III—Mental and Cognitive Ability

1
In the last few days, did you go through
the information you need over and over
again in order to remember it?

Quantify short-term
memory and focus capabilities

- Never
- Rarely
- Sometimes
- Often

Continuous Monitoring:
Once a week

2
From 1 to 10 how hard are you struggling
to stay focused on what you are doing
(e.g., losing your train of thought,
listening to what others are saying,
reading a book or watching a movie)?

Quantify memory and focus
capabilities Scale 1–10 Continuous Monitoring:

Once a week

2a In which situation does it happen
most frequently? If answer to Q2 ≥ 6 Free text

3
When an answer needs to be given,
do you need to take an extra moment
to pick up the thread and provide
the best answer?

Quantify memory and focus
capabilities

- Never
- Rarely
- Sometimes
- Often

Continuous Monitoring:
Once a week

4
During the day, do you have
the feeling of having a full head
that leads you to be less lucid?

Quantify issues in reasoning
and task completion

- Never
- Rarely
- Sometimes
- Often

Continuous Monitoring:
Once a week

5
From 1 to 10 how difficult is it
to find the word in your head?
How often do you get the terms wrong?

Scale 1–10 Continuous Monitoring:
Once a week

5a In which situation does it
happen most frequently? If answer to Q5 ≥ 6 Free text Continuous Monitoring:

Once a week

6
How many appointments or
commitments have you forgotten
in the last two weeks?

Quantify long-term memory Numeric entry Continuous Monitoring:
Once every 2 weeks

7
In the last two weeks, did you need
to write down commitments more
than usual to remember them
(e.g., using extra notes or alarms)?

Yes/No Continuous Monitoring:
Once every 2 weeks
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Table A2. Cont.

No. Question Intent Possible Answers Scheduling

Domain IV—Emotional status

1 How are you feeling today? Feeling of the day

One of: Anger, Fear, Sadness, Joy,
Contempt, Cheer, Shame, Anxiety,
Disappointment, Irritation, Serenity, Gratitude,
Grudge, Resignation, Hope, Nostalgia

Continuous Monitoring:
Once a week
( also able to

submit at will using
chatbot interface)

2 Are you feeling stressed this week? Intensity and frequency of stress Yes/No

2a In which statement do you
recognize yourself most? If answer to Q2 == Yes

- Level 1: “daily life” stress (work, home,
family)
- Level 2: stress from overlapping
commitments and difficulties in managing
things to do with respect to my mental energies
- Level 3: stress from the onset of worries or

aggravation of existing ones (e.g., economic
difficulties, conflicts at work or in the family)

- Level 4: stress from strong destabilizing events
(e.g., a radical change of life, bereavement)

3 In the last week, have you experienced
symptoms of previous relapses again? Quantify relapse risk Yes/No

Domain V—Quality of Life and daily living

1
In the last month, have you had to give up social
activities (eg. going out with friends, dinners with
relatives,attending events, etc.) due to MS?

Pattern of social interactions
linked to Quality-of-Life

- Never
- Rarely
- Sometimes
- Often

Continuous Monitoring:
Once a month

2 In the last month, have you had a greater need
forassistance in carrying out your daily activities?

Table A3. List Table of relevant questions by health domain for the stroke study.

Question Intent Possible Answers Scheduling

Domain III—Mental and Cognitive Ability

In the last few days, did you find it
difficult toconcentrate on a task?

Intensity and impact of moments
with loss of focus

- Never
- Rarely
- Sometimes
- Often

Continuous Monitoring:
Once a month

Domain IV—Emotional status

How are you feeling today? Feeling of the day

One out of:
- Anger
- Fear
- Sadness
- Joy
- Contempt
- Cheer
- Shame
- Anxiety
- Disappointment
- Irritation
- Serenity
- Gratitude
- Grudge
- Resignation
- Hope
- Nostalgia

Continuous Monitoring:
Once a month
(can also be provided

at will, using chatbot
interface)

In the last 4 weeks
have you felt nervous,
anxious, or on edge? Intensity of negative feelings

or worrisome attitude
- Never
- Rarely
- Sometimes
- Often

Continuous Monitoring:
Once a monthIn the last 4 weeks

have you worried too much
about different things related
to the stroke you suffered?

Domain V—Quality of life and daily living

In the last month, have you had
to give up social activities
(e.g., going out with friends,
dinners with relatives,
attending events, etc.) due to STROKE?

Pattern of social interactions
linked to Quality-of-Life

- Never
- Rarely
- Sometimes
- Often

Continuous Monitoring:
Once a month

In the last month, have you had
a greater need for assistance
in carrying out your daily activities?
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Appendix B. Prediction Targets and Ground Truth Conditions

Table A4. Prediction targets and ground-truth conditions for medical tests in motor ability domain.

Variable Description Pilot Study Prediction Target and Condition

Domain I—Mobility, general motor or physical function

6 min walk test Exercise test assessing
walking endurance and aerobic capacity MS

3-way classification
- reduction/no-change/increase

with respect to previous assessment

T25-FW
A quantitative mobility and
leg function performance test
based on a timed 25 step walk

MS, Stroke

binary classification
- classify between normal walking (T25-FW ≤ 4.4 s)

and abnormal walking (T25-FW ≥ 4.4 s)
- predict whether change ≥ 17.8% compared

to previous assessment

Stabilometry
Use of a computerized platform for stabilometric
(body sway), as well as posturometric (center of
pressure during quiet standing) examination

MS
binary classification
- normal (sway area ≤ 200 mm2)
- abnormal (sway area > 200 mm2)

Romberg Test
Test to asses the patient’s balance using
joint position, proprioception, and
vestibular stimuli without visual aid

Stroke
binary classification
- positive (existence of proprioception

disorder)
- negative (minimal or no swaying)

Berg Balance Scale
Determine patient’s ability to safely balance
during a series of 14 predetermined tasks,
each having a 0–4 ordinal rating

PD

binary classification
- fall risk (BBS < 52) versus

no fall risk (BBS ≥ 52)
- change ≥ 3 points compared

to previous assessment

MS

binary classification
- fall risk (BBS < 45) versus

no fall risk (BBS ≥ 45)
- change ≥ 3 points compared

to previous assessment

Stroke

binary classification
- fall risk (BBS < 44) versus

no fall risk (BBS ≥ 44)
- change ≥ 3 points compared

to previous assessment

NHPT 9-HPT is a brief, standardized,
quantitative test of upper extremity function

MS

3-way classification
- normal function (NHPT ≤ 18 s)
- had dysfunction (18 s < NHPT ≤ 33.2 s)
- severe dysfunction (NHPT > 33.2 s)
binary classification
- change ≥ 4.38 s compared to

previous assessment

Stroke

3-way classification
- normal function (NHPT ≤ 18 s)
- had dysfunction (18 s < NHPT ≤ 33.2 s)
- severe dysfunction (NHPT > 33.2 s)
binary classification
- change ≥ 32.8 s compared to

previous assessment

MRC
Quantify the muscle strength of a
particular muscle group in relation
to the movement of a single joint

MS, Stroke

6-way classification
- 0: No movement—0/5 MRC
- 1: Flicker of movement—1/5 MRC
- 2: Through full range actively

with gravity counterbalanced—2/5 MRC
- 3: Through full range actively

against gravity—3/5 MRC
- 4: Through full range actively

against some resistance—4/5 MRC
- 5: Through full range actively

against strong resistance—5/5 MRC

Modified Ashworth Measure spasticity in patients who
suffered a stroke MS, Stroke

5-way classification of muscle tone
- 0: no increase
- 1: slight increase
- 2: marked increase
- 3: considerable increase
- 4: affected parts rigid in flexion

or tension

MDS-UPDRS II
Standard PD scale of report of
activities of daily living (ADL)
based on motor activity

PD
binary classification
- increase of >6 points compared

to a previous assessment

Domain I—Mobility, general motor or physical function

MDS-UPDRS III Standard PD scale of motor
performance PD

binary classification
- increase of >6 points compared

to a previous assessment
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Table A4. Cont.

Variable Description Pilot Study Prediction Target and Condition

MDS-UPDRS IV Standard PD scale of motor
fluctuations and dyskinesias PD

binary classification
- increase of >2 points compared

to a previous assessment

HOEHN YAHR PD scale measuring global motor
function by report PD

binary classification
- increase of >1 points compared

to a previous assessment

SCOPA-Autonomic PD scale measuring various
aspects of autonomic function PD

binary classification
- increase of >10 points compared

to a previous assessment

Laboratory Investigation
of Autonomic Function

Various neurophysiological tests
to assess the sympathetic and
parasympathetic responses to various
stimuli

PD
binary classification
- increase of 20% compared

to a previous assessment

Daily rating of
motor complications

Relevant questions about
motor complications (dyskinesias
and off periods) reported by the patient

PD
binary classification
- predict 2 point increase in

devised scale

Diary of motor condition
Recording of severity level of
dyskinesias and off periods, at
30 min intervals, during the intense
monitoring period

PD
binary classification
- predict 20% increase in off time or

dyskinesias

EDSS
The Expanded Disability Status Scale (EDSS)
quantifies disability in multiple sclerosis and
monitors changes in disability level over time

MS

4-way classification
- minimal disability (0–2.5)
- mild disability (3–5.5)
- moderate disability (6–7.5)
- severe disability (>7.5)
binary classification
- change vs. no change compared to previous milestone

Table A5. Prediction targets and ground-truth conditions for medical tests in cognitive domain.

Variable Description Pilot Study Prediction Target and
Condition

Domain III—Mental and cognitive ability

MDS-UPDRS I
Standard PD scale of non-motor symptoms,
such as cognitive, emotional, autonomic,
sleep, fatigue or pain issues

PD
binary classification
- predict an increase of ≥6 points

compared to previous measurement

SDMT
The symbol digit modalities test (SDMT)
evaluates attention, processing speed
and visual scanning

PD, MS
binary classification
- normal (SDMT ≥ 41) vs. abnormal

(SDMT < 41)
- predict change of ≥17.1%

BVMT-R Screening test for visual and
spatial memory PD, MS

binary classification
- normal (score ≥ 22) vs. abnormal

(score < 22)

CVLT-II Measure of verbal learning and memory PD, MS
binary classification
- normal (score ≥ 47) vs. abnormal

(score < 47)

Verbal Fluency

Short test of verbal functioning.
Performance influenced by cognitive processes,
mainly including attention-executive functioning,
episodic memory, and language

PD, MS
binary classification
- normal (score ≥ 21) vs. abnormal

(score < 21)
- predict change of ≥10 points

MOCA Measures global cognitive function, with an
emphasis on executive frontal lobe functions MS, Stroke

3-way classification
- normal (score ≥ 26)
- abnormal (20 ≤ score < 26)
- dementia (score < 20)
binary classification
- predict change of ≥4 points

FAST

Functional scale evaluating patients at the more
moderate-severe stages of dementia when the
MMSE no longer can reflect changes in a meaningful
clinical way

Stroke

7-way classification
1. normal adult
2. normal older adult
3. early dementia
4. mild dementia
5. moderate dementia
6. moderately severe dementia
7. severe dementia

Virtual Supermarket Test
A serious game-based test to assess
global cognition, executive function and
visuo-spatial abilities (see Section 2.2.2)

PD, MS, Stroke
binary classification
- predict significant worsening of

performance as scored by test
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Table A6. Prediction targets and ground-truth conditions for medical tests in sleep, emotional status
and quality-of-life domains.

Variable Description Pilot Study Prediction Target and
Condition

Domain II—Sleep disorders

Polysomnography Video, EEG, EMG, EKG, breathing and heart
rate monitoring to assess sleep PD

binary classification
- predict increase of ≥25% in any

pathological pattern (insomnia, RBD,
heart rate, etc.)

- predict a ≥4% drop of oxygen
saturation or a level below 88%

PD Sleep Scale
Questionnaire measuring various aspects
of sleep and wakefulness related to
somnolence

PD binary classification
- predict a drop of ≥25 points

Epworth Sleepiness Scale,
Athens Insomnia Scale

Scales estimating daytime sleepiness
and insomnia PD

binary classification
- predict an increase of ≥6 points

compared to previous measurement

RBD Questionnaire Measure the possibility of the existence of
REM sleep behavior disorder MS, PD binary classification

- predict increase of ≥4 points

Domain IV—Emotional status

Geriatric Depression Scale Questionnaire measuring the degree of depressive
symptomatology PD

binary classification
- predict worsening by ≥3 points

compared to previous measurement

Beck Anxiety Index Questionnaire measuring anxiety PD, MS
binary classification
- predict worsening by ≥10 points

compared to previous measurement

PHQ-9
Monitor the severity of depression and
response to the treatment, supporting a
diagnosis of depression for patients having
suffered from a stroke

MS, Stroke

5-way classification
- none (score 0–4)
- mild (score 5–9)
- moderate (score 10–14)
- moderately sever (score 15–19)
- severe (score 20–27)

Domain V—Quality of life and daily living

PDQ39 or PDQ8
Gestalt quality-of-life measure, with 8 or 39 questions
probing the impact of motor and non-motor aspects
on patient quality of life

PD, MS
binary classification
- predict worsening by >10 points

compared to previous measurement

Schwabb & England Scale measuring disease impact on
activities of daily living PD, MS

binary classification
- predict decline of metric

compared to previous measurement

Radboud Dysarthria
Assessment (RDA)

Standard set of common speech and maximum
performance (speech-like) tasks for the perceptual
analysis of speech, using a qualitative recording form,
a severity scale and a self-evaluation questionnaire

Stroke

6-way classification
- no dysarthria
- minimal dysarthria
- mild dysarthria
- mild/severe dysarthria
- severe dysarthria
- very severe dysarthria

NIHSS scale Scale to objectively quantify the impairment
caused by a stroke Stroke

5-way classification
- no stroke symptoms (0)
- minor stroke (1–4)
- moderate stroke (5–15)
- moderate to severe stroke (16–20)
- severe stroke (21–42)

MRS
Measure the degree of disability or dependence
in the daily activities of people
who have suffered a stroke

Stroke

6-way classification
- no symptoms
- no significant disability
- slight disability
- moderate disability
- moderately severe disability
- severe disability

Barthel Index Ordinal scale used to measure performance
in activities of daily living MS, Stroke

4-way classification
- total dependency (0–20)
- severe dependency (21–60)
- moderate dependency (61–90)
- slight dependency (91–99)
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