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ABSTRACT 

Wearable-based human activity recognition (HAR) is 

essential for several applications, such as health monitoring, 

physical training, and rehabilitation. However, most HAR 

systems presently depend on a single sensor, typically a 

smartphone, due to its widespread use. To improve 

performance and adapt to various scenarios, this study 

focuses on a smart belt equipped with acceleration and 

gyroscope sensors for detecting activities of daily living 

(ADLs). The collected data was pre-processed, fused and 

used to train a hybrid deep learning model incorporating a 

CNN and BiLSTM network. We evaluated the effect of 

window length on recognition accuracy and conducted a 

performance analysis of the proposed model. Our 

framework achieved an overall accuracy of 96% at a 

window length of 5 seconds, demonstrating its effectiveness 

in recognizing ADLs. The results show that belt sensor 

fusion for HAR provides valuable insights into human 

behaviour and could enhance applications such as 

healthcare, fitness, and sports training. 

Index Terms—sensor fusion, human activity 

recognition, deep learning,  smart belt, wearable sensor. 

1. INTRODUCTION

The field of human activity recognition (HAR) has 

witnessed significant progress thanks to the advancements 

in sensor technology and the growth of the Internet of 

Things (IoT) [1]. With the increasing availability of 

miniaturized sensing devices that are cost-effective and 

consume low energy, sensor-based activity recognition has 

become a critical and influential topic in various research 

domains [2]. HAR is a method of automatically detecting 

and analyzing human movements using information 

obtained from multiple sensing devices [3]. HAR can be 

classified into two main categories: vision-based and sensor-

based. Vision-based HAR utilizes video sensor 

technologies, such as RGB cameras, to monitor and 

recognize the actions of the subject, while sensor-based 

recognition is based on body-worn sensors, such as those 

found in bands, smartwatches, clothes, and smartphones [4]. 

Wearable sensors are representative examples of state-of-

the-art sensors for detecting human motion, vibrations, and 

orientation changes in three axes. Wearables are ubiquitous, 

preserve user privacy, and have less computational 

complexity compared to vision-based HAR. With the 

growing maturity of artificial intelligence (AI) and deep 

learning approaches, wearable-based HGR has become 

popular in various domains, including healthcare services 

[5], smart homes [6], athlete monitoring [7], security, and 

surveillance systems [8]. This paper focuses on wearable-

based HAR using a fusion of sensors. 

The use of wearable sensors for human activity 

recognition (WS-HAR) has gained traction in the healthcare 

system due to its ease of use, cost-effectiveness, and ability 

to provide continuous monitoring [9]. Moreover, these 

sensors can serve as a substitute for assessing the frailty 

phenotype in elderly people [10][11]. Numerous studies 

demonstrate that recognizing physical activity and regular 

monitoring can potentially reduce the risk of several 

diseases in people, such as neurological disorders, 

cardiovascular disease, and type 2 diabetes [12]. The 

significance of WS-HAR lies in its ability to not only 

recognize daily activities but also how those activities are 

performed. This can be helpful in monitoring a patient's 

recovery after surgery, diagnosing the state of diseases, or 

predicting falls. Deep learning techniques are exciting 

methods well-suited for wearable-based gait activity 

prediction. 

Convolutional neural networks (CNNs) are specifically 

designed for image processing and analysis, but they can 

also be applied to other types of data, such as wearable 

sensor data [13]. The advantage of using CNNs for HAR is 

that they can learn to extract features automatically from the 

raw sensor data without the need for hand-crafted feature 

engineering. Wearable sensor-based activity recognition 

tasks have extensively utilized CNN and LSTM networks 

[14]. A recent review of such deep learning techniques for 

wearable-based HAR is provided in reference [15].   

In this paper, we propose a hybrid deep learning 

framework based on wearable sensor-level data fusion for 

activity recognition problems with improved performance. 

The proposed model is a combination of two powerful deep 

learning techniques, namely, 1D Convolutional Neural 

Networks (CNNs) and Bidirectional Long Short-Term 

Memory (BLSTM) networks. The robustness of the 
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resulting recognition system has been evaluated using an 

inertial measurement unit (IMU) sensor integrated and used 

as a smart belt. One belt sensor contains 3 IMU sensors 

involving both acceleration and gyroscope sensors to collect 

triaxial linear and triaxial angular data at different points in 

the human waist. The belt provides more possibilities and 

higher accuracy for HAR tasks with an adaptation of various 

scenarios and thus plays an essential role in obtaining 

posture information. Thus, the main contribution of this 

article is summarized as follows: 

• To recognize activities of daily living and assess the effect 

of increasing window size on recognition performance, 

we employed a smart belt with three motion sensors 

mounted around the human waistline. 

• The study proposes hybrid deep learning as a viable and 

efficient method of offering an accurate solution to human 

gait activity recognition. 

• We introduce a new smart belt dataset that utilizes a 

fusion of sensors located at different points around the 

waist for HAR, which differs from current datasets that 

mainly depend on a single sensor, usually a smartphone. 

 

2. PROPOSED HAR MODEL FRAMEWORK 

The entire configuration of our proposed wearable sensor-

based HAR framework is presented in Fig. 1. The process 

starts with data acquisition, which involves gathering data 

from smart belt sensors. The next step is performing sensor-

level data fusion, which combines acceleration and 

gyroscope sensors from three different positions around the 

human waist. The data pre-processing is applied to the fused 

sensor data, including noise reduction, missing data filling, 

and data normalization. Data segmentation is also necessary 

to convert the multi-dimensional sensor data into sample 

data suitable for model training. This involves defining 

temporal windows, determining the overlap of temporal 

windows, and assigning class labels. The proposed 

framework primarily includes CNN-BiLSTM where its 

performance is evaluated using accuracy, precision, recall, 

F1-score, and a confusion matrix. The confusion matrix is 

used to compare the results of the proposed model.  

2.1 Smart Belt Data Collection 

Our source of data for this study is the smart belt motion 

tracking sensor, which was designed and developed at the 

Norwegian University of Science and Technology (NTNU). 

The smart belt data was collected at NTNU's university 

campus by performing experiments on twelve volunteers for 

performing activities of daily living (ADL). These activities 

include walking, walking downstairs, walking upstairs, 

sitting, lying, and standing, with each activity performed 

two times. Fig.2. shows an example of the daily activity 

samples collected from one IMU sensor mounted on the left 

hip of a volunteer performing a ‘Walking’ activity with two 

trials (repetitions).  

Fig.2. Example data for ‘Walking’ activity one user.  

 

Each subject wore three IMU (inertial measurement unit) 

sensors simultaneously at specific body locations around the 

waist, including left, right, and middle hip, to measure the 

physical activities of the user. The sampling rate was 100 

Hz, and a total of 22 attributes were collected from sensors 

for each sample. The sensors worn by the subjects were 

securely mounted on a regular elastic waist belt. This 

resulted in minimal movement between the sensor and the 

elastic waist belt. All participants were required to make all 

the six ADLs in the way they used to. The sensors recorded 

both linear accelerometer and gyroscope sensor data using 

the three types of oriental motions (forward-backwards, 

upward-downward, and sideways with relation to the x, y, 

and z-axes). The dataset for the smart belt used in this study 

will be made publicly available in the future.  

2.2 Pre-processing  

Before analysis and modelling, the acquired multi-

dimensional data needs to undergo a pre-processing stage. 

In the case of the smart belt dataset, several techniques were 

employed to pre-process the data, including noise filtering, 

normalization, segmentation, and data balancing. To reduce 

noise and improve the quality of the signal, a median filter 

and a third-order low-pass Butterworth filter were employed 

with a cut-off frequency of 20Hz, as most of the information 

contained in human body movement is below this frequency 

[16]. Min-max normalization was used to scale the data into 

Fig.1 The proposed framework of wearable sensor based HAR. 

 

Authorized licensed use limited to: Imperial College London. Downloaded on October 31,2023 at 17:04:42 UTC from IEEE Xplore.  Restrictions apply. 



the range between 0 and 1 with mean and standard 

deviation. Segmentation was done using a fixed-size sliding 

window to extract relevant features or patterns from the 

data, and the most frequently occurring activity within a 

window was selected as its label. Data balancing was also 

implemented to address any imbalances in the data and 

improve the performance of the classification or prediction 

model. To annotate the collected signals from the IMU 

sensors in the smart belt, the NOVA annotation tool was 

used [17]. The goal was to recognize the six activities of 

daily living: walking downstairs, walking, walking upstairs, 

standing, sitting, and lying. Although time-consuming, using 

the NOVA annotation tool provided a more precise labelling 

process.  

 

2.3 Hybrid Deep Learning Model 

The proposed CNN-BiLSTM architecture for the activity 

recognition problem is presented in Fig.3. In this paper, 1D 

CNN is combined with BiLSTM as a powerful technique for 

the HAR task. The 1D CNN is applied to extract local 

features from the input sequence by applying a set of filters 

to sliding windows of the input. It consists of one or more 

convolutional layers, followed by a max-pooling layer. The 

output of the CNN is a sequence of feature maps. The 

BiLSTMs, on the other hand, are good at processing 

sequential data, such as time series data from sensors. It 

takes the sequence of feature maps from the CNN as input 

and learns the temporal dependencies in the data. It consists 

of one or more LSTM layers, each with a forward and 

backward direction. The output of the BiLSTM is a 

sequence of hidden states. The classifier takes the final 

hidden state from the BiLSTM and uses it to classify the 

activity. The classifier can be a simple, fully connected layer 

with softmax activation. The final output of the network is a 

prediction of the activity performed by the person.   

3. EXPERIMENTAL RESULTS AND DISCUSSIONS 

This section presents the experimental results of the 

proposed model. It includes the experimental setup, results, 

and discussions, as well as a comparison of our proposed 

model with other hybrid models. 

3.1  Experimental setup   

The implementation and experiments were carried out with 

various frameworks and libraries, such as Anaconda with 

Python 3.10.5 and TensorFlow 2.9 with Keras frontend. The 

proposed model was trained and evaluated using the smart 

belt dataset, which was segmented and reshaped into 

suitable input dimensions. The generated samples were split 

into a training dataset and a testing dataset with a ratio of 

80% and 20%. On the training dataset, grid search with 5-

fold cross-validation was utilized to tune the models with 

hyperparameters. 

3.2 Experimental Results   

In our experiment, we first examined the influence of 

increasing window sequence length on the performance of 

the CNN-BiLSTM model for action recognition. In this 

paper, we validate the recognition performance of the 

proposed hybrid model by varying the window sequence 

lengths (0.5,1,2, 3,…, 9 in seconds). A comparison is made 

between different sequence lengths to determine their 

impact on the performance of the proposed CNN-BiLSTM 

model, and the results are presented in Table 1. We realized 

 
Window Size (seconds) 

 0.5 1 2 3 4 5 6 7 8 9 

Accuracy  79.72 84.52 88.21 92.47 92.32 96.02 91.88 93.59 93.87 94.58 

Precision  81.40 85.20 88.70 92.61 92.65 96.00 91.95 93.54 93.95 94.53 

Recall  79.50 84.60 88.31 92.57 92.19 95.97 92.05 93.28 93.97 94.66 

F1-Score  80.00 84.70 88.20 92.38 92.32 95.96 91.82 93.33 93.85 94.55 

Fig.3. Proposed architecture of CNN-BiLSTM for activity recognition problem. 

 

Table 1. Recognition performance of CNN-BiLSTM model across different window sequence length 
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that when the sequence length is increased, the performance 

of the proposed CNN-BiLSTM model is improved 

significantly on the smart belt dataset. The performance of 

the model is increased for larger window sizes where the 

best accuracy (96.02%) and F1-score (95.96%) are attained 

at a window length of 5s. After the sequence length of 5s, 

the performance becomes stagnant and starts decreasing for 

all evaluation metrics. Although larger window sizes 

provide more past and future information to analyze and 

identify more complex activities, they contain redundant 

information and lead to large recognition latency [18][19]. 

In this paper, a cut-off window size of 5s is used as the best 

trade-off between accuracy and latency to evaluate the 

performance of the proposed CNN-BiLSTM. Fig. 4 presents 

the confusion matrix obtained from the evaluation of the 

CNN-BiLSTM at a window size of 5s, which summarizes 

the number of correct and incorrect predictions made by the 

model for each activity class. As shown in Fig.4, except for 

the 'laying' and 'walking' activities, all the other activities 

were perfectly classified with high accuracy (>=95%) using 

the CNN-BiLSTM model. All the samples in the 'Standing' 

activity were correctly classified with an accuracy of 98.4%,       

Fig.4. Confusion matrix of the CNN-BiLSTM model with only 

1.6% of the samples wrongly classified as 'laying'  and 

'downstairs. It is also evident that the CNN-BiLSTM model 

had the most difficulty in distinguishing the 'Laying' from 

the 'Standing' and 'Sitting' activities. This is partly because 

the ‘Laying’ and ‘Sitting’ is very similar for some of the 

subjects, thus generating similar motion signals. For the 

‘Walking’ activity, where 5.66% of the samples are wrongly 

classified as ‘Downstairs’ and ‘Standing’. Fig. 5 shows the 

accuracy loss of the model for 50 epochs where a gradual 

decrease in loss can be observed throughout the training 

session.  The CNN-BiLSTM model was compared with 

other hybrid models in terms of accuracy, precision, recall 

and F1-score. Table 2 depicts the comparison of the CNN-

BiLSTM with the other three hybrid models, namely CNN-

LSTM, CNN-GRU, and CNN-BiGRU, in terms of accuracy, 

precision, recall, and F1 score using a window length of 5s.  

The comparative results in Table 2 demonstrate that the 

CNN-BiLSTM model achieved the highest performance 

across all the evaluation measures. 

                 Fig.5. Accuracy loss of the proposed model 

 
Table 2. Performance of the proposed model 

Models Accuracy Precision Recall F1-Score 

CNN-LSTM 95.59 99.95 95.50 95.50 

CNN-GRU 95.73 95.64 95.69 95.70 

CNN-BiGRU 95.02 95.08 95.00 94.99 

CNN-BiLSTM 96.02 96.00 95.97 95.96 

 

4. CONCLUSIONS 

The study proposes a 1D CNN-BiLSTM hybrid model for 

human activity recognition based on sensor-level data 

fusion. The proposed model utilizes CNN layers for feature 

extraction and BiLSTM for sequence prediction on the 

smart belt dataset. The study demonstrates that the proposed 

hybrid model achieved good performance on HAR. One of 

the significant advantages of the proposed model is that it 

employs three motion sensors mounted around the waist as a 

smart belt, which differs from traditional activity 

recognition methods that rely on a single sensor, usually on 

a smartphone. Additionally, the study investigates the 

impact of increasing window length on the recognition 

performance of the proposed model and finds that longer 

window lengths lead to better performance. The results of 

the study show that the proposed 1D CNN-BiLSTM hybrid 

model can effectively recognize human activities using 

smart belt sensors, indicating its potential applications in 

healthcare.  
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